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ABSTRACT

Although robotics research has produced a wealth of sophisticated control and sens-

ing algorithms, very little research has been aimed at reliabIy combining these con-

trol and sensing strategies so that a specific task can be executed. To improve

the reliability of robotic systems, analytic techniques are developed for calculating

the probability that a particular combination of control and sensing algorithms will

satisfy the required specifications. The probability can then be used to assess the

reliability of the design. An entropy formulation is first used to quickly eliminate

designs not capable of meeting the specifications. Next, a framework for analyzing

reliability based on the first order second moment methods of structural engineering

is proposed. To ensure performance over an interval of time, lower bounds on the

reliability of meeting a set of quadratic specifications with a Gaussian discrete time

invariant control system are derived. A case study analyzing visual positioning in a

robotic system is considered. The reliability of meeting timing and positioning spec-

ifications in the presence of camera pixel truncation, forward and inverse kinematic

errors, and Gaussian joint measurement noise is determined. This information is

used to select a visual sensing strategy, a kinematic algorithm, and a discrete com-

pensator capable of accomplishing the desired task. Simulation results using PUMA

560 kinematic and dynamic characteristics are presented.
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1. INTRODUCTION

As the study of robotic systems has progressed throughout the years, a large archive

of special purpose algorithms suitable for various control and sensing tasks has been

produced. Often several different algorithms are available which are capable of

executing the same task with varying levels of performance. Use of redundant mea-

surements, for example, improves accuracy at the cost of increased computational

time. Similarly, a vision system may be capable of producing depth measurements

using feature matching, point matching, focusing, structured lighting, stadimetry',

etc. Control strategies may include either a PD or PID compensator for the same

task, thus yielding different accuracies and response times. Classically designed com-

pensators may, be well suited for meeting a desired settling time and overshoot, while

optimally designed compensators are best at meeting a quadratic cost functional.

1.1 Motivation

Although many robotic control and sensing algorithms have been derived, very"

little effort has been directed at ensuring and analyzing the reliability of a robotic

plan which uses the algorithms to accomplish a specific task. As a consequence,

it is quite possible to program an elaborate sequence of events using sophisticated

control and sensing algorithms, but no formal methods have been developed for

guaranteeing that the sequence will reliably' produce the desired effect.

In light of the plethora of algorithms available for treating many common

robotic tasks, this work does not derive new control/sensing algorithms, but rather

presents a consistent and general framework for analyzing the reliability of these

algorithms. As such. it contributes to the final goal of designing "intelligent ma-

chines" capable of operating in uncertain environments with minimal supervision or



interactionwith a human operator. Other aspects of thissubject have already been

extensively-developed by Saridls,who has proposed the combination of artificialin-

telligence,control systems, and operations research through the use of information

theory [45], [60], [4S].

Until recently, reliability efforts were confined for the most part to empirical

"common sense engineering" approaches. For instance, to reliably grasp a compo-

nent, a series of fixtures were fashioned until the component could be held securely

in a specified position. After repeated experimental successes, the plan was deemed

reliable. This method is time consuming and hard to generalize. Recently, sev-

eral works have analyzed the reliability of particular sensing algorithms, but have

still not suggested methods for combining sets of algorithms and assessing reliabil-

ity. Unfortunately, increased precision is often gained at the cost of increased time,

computations, complexity, etc. Consequently, a sensing algorithm often cannot be

fully evaluated in itself, but must be considered in conjunction with the control

system which produces actions based on the measured perceptions. Similarly, the

control performance depends on the sensing statistics. In short, control and sensing

are dual entities: control determines interaction with the environment while sensing

observes the effect of these interactions.

!

!

1.2 Problem Definition

Given an explicit task to be executed by the intelligent machine and a set of

plans, .4 = {,41 .... , A,,}, consisting of control and sensing strategies applicable to

the task. first select those plans which are potentially capable of attaining perfor-

mance within the desired specifications (feasible plans). This selection procedure is

a coarse and computationally efficient stochastic analysis aimed at greatly reducing

the number of plans for which the explicit probability of success must be calculated.

For these feasibIe plans (.4i,_s,). find the reliabilities associated with the alternative

|



subsetsof control and sensingalgorithms suchthat the task can beaccomplishedto

meet the set of desiredspecifications,So = {s_,...,s_}.

At this juncture, the reliability of hardwarecomponents(power supplies, pro-

cessors,sensors,actuators, etc.) is much greater than the reliability of plans to

execute tasks. Therefore, hardwarefailures will be neglected,and the analysis will

concentrateon planning faults.

1.3 Overview of the Approach

This work proposesmethods for combining control and sensingwithin the

context of robotic systems. Sinceconceptsfrom reliability theory, control theory,

and sensorfusion are used,we have coined the term "reliable control and sensor

fusion" [aa] to describe this research field. Reliable control and sensor fusion is

defined as the unification of sensor information and control strategies such that an

acceptable level of reliability in accomplishing a desired task is achieved.

Rather than relying on heuristic simplifications or highly constrained tasks, a

general mathematical framework founded on entropy is derived. First, it is shown

that reliability specifications can be mapped to a set of entropy constraints which

define the precision necessary for the task at hand. Next, an algorithm which makes

use of these entropy constraints is presented for selecting feasible sets of control

and sensing algorithms for a given task. Since entropy is invariant with respect

to homogeneous coordinate frame transformations [28], this approach simplifies the

reliability' analysis for physically distributed robotic systems. In addition, bv using

reliability and information theory, techniques are developed to provide an analytical

means of evaluating the reliability of a sequence of elementary events. Moreover,

by augmenting reliability theory with information theoretic concepts, simple meth-

ods of combining the reliabilities of different coordinator sub-systems are obtained.

To ensure performance over an interval of time, lower bounds on the reliability of
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meeting a set of quadratic specificationswith a Gaussian discrete time invariant

control system are derived. Theseconceptsare validated via a detailed analysisof

an extremely common robotic task-the problem of vision guided positioning to an

oriented point.

W

1.4 Literature Review

Previous research on individual issues of reliability analysis in intelligent ma-

chines has contributed greatly to certain segments of this work. In particular, six

issues relevant to this analysis are well trodden research areas.

!

1.4.1 Generation of Reliable Plans

The previous attempts to generate reliable robotic plans can be divided into

two categories. The first school of thought attempts production of reliable plans

by modeling the environment (using either probabilistic techniques or worst case

geometric bounds) and, based on the model, generating a plan robust enough to

reliably execute the task without errors. This thesis takes a similar approach from

a stochastic viewpoint, but concentrates on analysis which will facilitate planning,
=,=

rather than considering planning directly. The second school emphasizes error iden-

tification and recovery, with the assumption that reliability may be achieved by

recovering from most errors. A considerable body of work ha_s been dedicated to

this topic, but most works do not pertain to this thesis. Since this thesis uses a

stochastic approach, only the stochastic attempts at error identification and recov-

ery will be reviewed ..........................

Brooks [6] models the environment using a geometric analysis of tolerances

rather than using stochastic techniques. In particular, geometric bounds on the al-

lowable position error for a peg-in-hole insertion problem are symbolically derived.

Since a symbolic expression is available, it is possible to alter geometric parameters

!

|
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-and see the effect on the bounds. The bound information is incorporated into an AI

=_-- based "plan checker" which checks the bounds against the positioning constraints to

_ _ ensure that the plan will reliably be executed. The main advantage of the method
:_N: is that the symbolic expressions allow alternative plans to be investigated. Unfortu-

nately, the symbolic expressions do become very complex even for simple geometric

arrangements. In addition, the geometric approach tends to check only the worst

case conditions, and thus resulting plans may be quite conservative.

Mazon and Alami [31] are also principally concerned with improving relia-

bility in the presence of positioning uncertainty, but they make use of stochastic

methods of modeling the position uncertainty. The uncertainty is modeled as a zero

mean Gaussian disturbance to a homogeneous coordinate frame. The disturbance

is propagated between homogeneous coordinate systems in the form of covariance

statistics. The covariance is transformed between homogeneous coordinate frames

using rotation and translation matrices. The uncertainty information is used off-line

to build a flexible plan which uses a LISP based program to check the build up of

errors and compare them to those allowed by the fixtures. If the error is too large,

a search is used to find a strategy which has a greater chance of success.

Havel and Kramosil [15] also use a stochastic approach to robot plan formation

for reliability improvement. The planning strategy is rigorously defined using formal

language techniques. Based upon reliability estimates, searches for reliable plans are

performed. The reliability functions are not obtained through a stochastic analysis,

but instead are heuristically defined. For instance, one measure of reliability is

defined such that it is inversely proportional to the number of iterations required

for SUCCESS.

Henderson [17] implicitly strives for reliability by attempting to organize the

knowledge necessary to map robotic system requirements onto an appropriate as-

sembly of algorithms, processors, sensors, and actuators. Synthesized systems which
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are known to operate reliably are packaged as "logical sensors" and are then av_iilab[_

aS a system resource.

Smith and Gini [53]propose reliabilityimprovement through error analysis

and recovery. A set of sensors are used to trace the execution of the robot, and

detect when an error has occurred. The nature of the sensors used in thisdetection

are not specified.Once the cause of the errorisdetermined, the plan isreformulated _-

to allow "forward recovery" rather than attempting to return to the state prior to

the error ("backward recovery").

Taylor and Taylor [58] also investigate error identification and recovery, but

concentrate their work on error identification. The goal is the minimization of

sensor processing during identification, All possible errors are enumerated, and the

probability of each error is used. The paper does not disc_uss means of obtaining

the error vector or the probabilities. Based on this information, two dual problems

are treated. First, estimates of the probability that a particular sensor will detect

a particular error source are found. Next, methods of determining the error source

given sensor readings are developed. In a later paper [591, Bayes theorem is used to

determine the error source.

!

1.4.2 Reliability Analysis Techniques

Reliability analysis techniques for calculating the probability of success of large

systems with algebraic relationships have been developed by civil engineers for use

in analyzing structural safety. These techniques have recently been extended for use

in manufacturing analysis.

Shinozuka [49] reviews several structural reliability analysis techniques. Three

methods are recommended: Monte Carlo simulation, use of the Stoke and Gauss
!

divergence theorem to reduce the dimensionality of the problem, and first order

second moment methods. The first order second moment methods are treated in

!



detail, and it is shown that the reliability index is the point most likely to fail.

Parkinson develops the first order second moment methods in a series of pa-

pers. First, the technique is derived in terms of correlated Gaussian variates, rather

than uncorrelated standard normal variates [36]. In addition, an iterative method

of calculating the reliability index is proposed. Next, the first four sample moments

are used, along with the Johnson transformation, to obtain a multivariable standard

normal distribution corresponding to the sample data [38]. For each measurement,

xi, a corresponding standard normal variate, zi, is found. These marginally nor-

mal variates are assumed to be jointly normal. The covariance between transformed

sample data points is found numerically. The statistical uncertainty in the reliability

index caused by the sampling is estimated for two special cases-linear and spherical

performance functions. A Bayesian based technique is suggested for updating the

estimates if additional data is given.

The iterative technique of solving for the reliability index is further developed

in [37]. In particular, by numerically evaluating the failure surface at a number

of points, an algorithm for categorizing the failure surface as linear or spherical is

proposed. Based on the categorization, the reliability may be calculated using either

the normal or chi-squared distribution functions.

Parkinson applies the first order second moment method to assembly of man-

ufactured components with given tolerance ranges [39]. In this case, a failure has

occurred if the set of components will not assemble correctly. The first four sam-

ple moments and the Johnson transform are employed to obtain a set of standard

normal variates for use in calculating the reliability index. A numerical example is

applied to assembly of a bicycle crank.

Lee and Woo [30] continue Parkinson's application in manufacturing toler-

ances. Through use of Parkinson's reliability analysis of tolerances, methods of

tolerance selection are found. The resulting solution employs integer programming



8

methods to optimize tolerance choice.

1.4.3 Stochastic Sensor Fusion

Determining the accuracy of robotic sensors holds some unique problems in

that the sensor systems are often distributed physically over several different lo-

cations which may be changed. To address this issue, Smith and Cheeseman [52]

propose a method of transforming the covariance statistics of three degree of free-

dom position measurements between homogeneous coordinate frames. The method

makes use of the 3x6 Jacobian matrix between the frames, and Kalman filtering is

employed to combine the measurements once they are transformed to a common

coordinate system.

Durrant-Whyte [8] [10] extends the Jacobian based propagation of covariance

to the full six degrees of freedom. The analysis demonstrates that orientation er-

rors in an initial frame can cause position errors in the new frame as a function

of the distance between frames. In addition, a technique is presented of describing

geometric features (i.e. points, lines, planes, circles, etc.) as families of parame-

terized functions with probability distributions defined on the parameter vectors.

These features (represented as parameter vectors) can then be transformed between

coordinate frames. The methods are used to develop maximal information sensing

strategies.

Durrant-Whyte [9] extends these ideas to develop a theory for integrating and

propagating geometric sensor observations throughout a distributed system. The

result is a two step process. First, the measurements are integrated into the system

representation. Next, the measurements are propagated throughout the system

to maintain consistency. Bayesian methods are used to combine measurements,

with both the jointly normal and "contaminated Gaussian" distributions treated in

detail. Differential homogeneous transforms are used to consistently integrate closed

J

!

!
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kinematic chains of measurements.

1.4.4 Reliability Analysis of Individual Algorithms

Several particular algorithms for sensing and control have been analyzed for

accuracy and reliability. For instance, Azadivar [3] analyzes the effect of joint posi-

tioning errors on hand accuracy using a stochastic approach, rather than bounding

volumes. The errors are assumed to be zero mean, and are assumed to arise solely

from random joint positioning. In other words, link and joint flexibilities, as well

as link parameter errors are neglected. A "success function" is defined which is a

function of hand position, desired hand position, and a vector of cost measures.

The probability of success is then found by the sample mean of the success function.

The method is applied to a pin-in-hole example. A rudimentary form of feedback

analysis is incorporated by assuming that the uncertainty can be reduced, through

feedback, by a multiplicative factor p (p < 1) each r seconds.

Considerable research has been focused recently on analysis of stereo vision

systems. Blostein and Huang [4] analyze the accuracy of two parallel cameras in

measuring the position of a point. The quantization caused by discrete pixels is

assumed to be the sole source of error, i.e. calibration and focusing imperfections

are neglected. The quantization of the pixels in each image plane produce a volume

of uncertainty corresponding to each pair of left and right camera pixels. It is

assumed that the point's actual position is uniformly distributed within the volume

of uncertainty. Based on this assumption, the corresponding distribution in the

image plane is derived. Using this information, the probability that the relative

range error is within a tolerance bound is calculated as a function of the disparity.

Rodriguez and Aggarwal [42] continue Blostein and Huang's analysis, but make

one different assumption. Rather than assuming that the position of the point is
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uniformly distributed in the volumeof uncertainty, the analysisis simplified by as-

suming that the imageposition of thepoint is contaminated by uniformly distributed

noise. This greatly simplifies the calculationsat the cost of decreasedmodel fidelity.

The range error probability density is derived in terms of cameraparameters.

For tractability, Leeand Kay [29]linearizethe error analysisof a stereovision

system with parallel cameras. Two sourcesof error are considered: errors arising

from Caussianimagenoise,and positioningerrorsof the vision system. In contrast

to previous papers, the analysis includes all three degreesof freedom for a point

(not just range). Moreover,four points arranged like a cube and its vertices are

examined simultaneously. As a consequence,both position and orientation errors

of an object are determined. A Kalman filtering schemeis employed to combine a

sequenceof imagesfor usein motion estimation.

Becausethe correspondenceproblemsin stereovision pose great di_culties,

Grand]can and Robert de Saint Vincent [12] merge data from both a laser range

finder and a stereo vision system. An extended Kalman filter is used to fuse low

level information into higher level constructs (i.e. points to lines: lines to planes;

etc.).

Rather than stochastically modeling the sources of error, Han [13] improves

the reliability of computation using homogeneous transformations by incorporating

fault tolerant linear arithmetic coding. By using various checksums, both error

detection and recovery in homogeneous transforms can be realized. The method is

especially applicable to paraliel processing systems be2gfl-_e a-series of h0mogeneous

transformations may be performed simultaneously on individual processors, and

then transmitted to a central processor. In this manner, the fault tolerant scheme

offers one method of compensating for communication _r-s_ : :ii

!

!
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1.4.5 Entropy Based System Analysis and Design

To analyze the information flows in large systems, entropy has been used by

several researchers. Conant [7] models hierarchical general systems in this manner.

A "partition law of information rates" is derived which shows that requirements

on a system for selection of appropriate information, coordination of parts, and

throughput are additive. In a related paper, Koomen [25] uses entropy to model

the process of design. The model is based on Conant's partition law of information

rates.

Saridis and Valavanis [48] make use of Conant's partition law for analytically

designing intelligent machines. The intelligent machine is formulated as the mathe-

matical problem of finding the right sequence of internal decisions and controls for

a system structured in the order of intelligence and inverse order of precision such

that it minimizes its total entropy.

Entropy concepts are used by Sanderson [44] for modeling the assembly of

manufacturing parts constrained to a number of discrete positions. The model is

useful for assessing product designs and quantifying the complexity of assembly

procedures. Sensors are incorporated through use of conditional entropy.

In a series of papers, Kalata and Priemer derive entropy based stochastic

approximation algorithms. A minimax error entropy stochastic approximation al-

gorithm is used to estimate the state of a non-linear discrete time system in [22].

In addition, an upper bound formula for the resulting error entropy is presented.

The upper" bound is further employed in [24] to determine when smoothing should

cease. The error entropy method is also used for system identification both with

and without uncertainty [21]. The ideas are further clarified in [23].
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1.4.6 Reliability Analysis of Control Systems

A lai'ge body of researchexists within control theory for designing controls

which are reliable in respondingto uncertain plant parametersor actuator failures.

Typically, a "reliable" control is defined to be a control law which remains stable

evenwhenthe worstcaseuncertainty'occurs. The control developmentin this thesis,

on the other hand, analyzesthe ability of a given control law in meeting a set of

quadratic specifications when the system is perturbed by zero mean Gaussian noise.

Hence the thrust is on analysis, not design, of controls. Moreover, reliability is

defined as the probability of meeting a set of specifications.

In order to design control systems which are stable in the presence of failures,

Viswanadham's book [62] provides detailed information. In a later work, Viswanad-

ham [61] concentrates on fault detection and diagnosis in automated manufacturing

systems. The approach is based on Petri nets.

In a series of papers ([43], [54], [40], [55], [41]) Stengel and Ray develop a

procedure for estimating the stochastic robustness of a linear time-invariant system.

Given a probability distribution for the uncertainties, a Monte Carlo simulation is

performed to find the probability that the system will become unstable. The method

can be extended to find probabilities for system characteristics other than stability.

A method for finding the class of all compensators for linear time invariant

systems which will produce a desired steady state covariance is developed by Skel-

ton, Hsieh, and Ikeda ([18], [50]). Since methods are developed for designing the

stochastic parameters of the system, it may" be possible to combine the reliability

analysis techniques developed in this work with Skelton's design techniques. Further

background information is available in [51].

!
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1.5 Organization of the Thesis

This"thesis suggests a two--stage reliability analysis. The first stage allows

rapid selection of feasible plans by using entropy constraints and is presented in

chapter 2. The second stage, which is outlined in chapter 3, proposes methods for

calculating the probabilities of success for each feasible plan. To ensure performance

over an interval of time, lower bounds on the reliability of meeting a set of quadratic

specifications with a Gaussian discrete time invariant control system are derived

in chapter 4. To test these concepts on problems of realistic difficulty, chapter 5

applies the methodology to visual positioning using a stadimetric vision system and

a six degree of freedom manipulator. Finally, chapter 6 discusses the work and its

contributions.
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2. ENTROPY BASED SELECTION OF FEASIBLE PLANS

In order to synthesizecontrol and sensingwith reliability, a two step analysis is

proposed. First, aset of entropy constraintsis found which must besatisfied for re-

liable operation to occur. Thosesetsof control and sensingalgorithms which satisfy

the entropy constraints will form feasible sets of algorithms. For many applications,

satisfaction of the entropy constraints alone will yield sufficient reliability for the

task at hand. This is especially true when failure imposes only a small penalty. On

the other hand, when a very high degree of reliability is required, a second stage of

analysis which explicitly calculates the reliability (Bi) corresponding to each feasible

subset (Ale,s,) is necessary and is explained in the next chapter.

This thesis develops a new entropy based technique which allows efficient se-

lection of feasible plans. The more intelligent activities required to formulate the

sets of algorithms are not considered. Rather, the statistical behavior of a given

plan is explored and evaluated. Thus (in the context of Intelligent Machines as

proposed by Valavanis and Saridis [60]) the Organizer and Coordinators first select.

from the library of all possible control and sensing algorithms, subsets of algorithms

potentially able to solve the given task. These subsets may well contain multiple

control algorithms for applications such as gross positioning followed by fine move-

ment. Moreover, multiple sensing algorithms may be included for utilizing several

sensor subsystems. A particular subset is denoted as Ai, and may be regarded as a

low level plan for executing the desired task. On the other hand, not all algorithms

are included because some obviously do not apply. For instance, if position mea-

surement is required, vision routines for object inventor)" are not included. For the

most part, this portion of the planning utilizes logical predicates which are adroitly

handled through the use of Petri net transducers [63]. In contrast, once these plans

are formulated, it is still necessary to examine the statistical characteristics of the

I4
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plans, Ai, and their relationship to the set of desired specifications, SD.

The objective of this chapter is: select from the entire space of plans A =

{A1,..., A,_} those subsets of algorithms that may reasonably be expected to attain

performance within the desired specifications. These plans will be called the feasible

plans, A/,,_,. This goal is achieved through an information theoretic interpretation

of the desired specifications using Jaynes maximum entropy method (MEM).

2.1 An Entropy Formulation of Desired Specifications

Jaynes maximum entropy method is a technique for determining the least bi-

ased probability distribution of a probability space subject to given constraints. The

least biased distribution is that distribution which maximizes the entropy subject

to the given constraints [19], [20]. The MEM has been applied to many statistical

inference questions, and several classes of problems have useful and tractable solu-

tions. For instance, suppose we wish to find the density, f(z), of a random variable

x subject to the condition that the expected values,/ai, of n known functions g,(:r)

are given. MEM analysis yields a density

f(z) = Aexp[-Aigl(z) ..... A,_g,_(x)] (2.1)

where A, A1,.-.,A,, are constants derived from the constraints [35]. The maximum

entropy corresponding to the constraints is

H(z) = _i_l + "'"-I- )_r_r* -- In A (2.2)

Consequently, if constraints involving expected values (i.e. moments, etc.) are

known, then the MEM, through (2.1) and (2.2), provides the least biased distribution

and entropy.

MEM distributions and entropies for several common sets of constraints are

presented in [14] and [23]. For convenience, Table 2.1 summarizes those results.
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Constraints Distribution Entropy

Bounds, _(a, b) Uniform ln[b - a

Mean (/_), Variance (o'2) .

Bounds (a, b),

Mean #

Table 2.1:

Gaussian

Truncated

Density
1

b-a

' exp[-_]

A e_Mr
_--Aa_e--Ab 7

1 ln[2reo.2]

Ag

Exponential _ = _ - e-_o_e-_b -

Maximum Entropy distributions and entropies for several

common sets of constraints

The key to unifying the reliability and information theoretic approaches lies

in the MEM of Jaynes. Given the set of desired specifications, So, it is possible

using the MEM to generate the least biased probability density function given the

specifications. Moreover, the maximum entropy corresponding to the specifications

is also provided by the method. For instance, if the specification is a safe velocity

range, (-v_, v,,,=,), then the MEM yields a uniform distribution as the maximum

entropy distribution, with H(specification) = ln2v,,_ (Table 2.1). Similarly, if

thenthe specification is a positioning error with mean of zero and variance o'_p,

the maximum entropy distribution is Gaussian with H(specification) = In _.

The method is especially adept at modeling hard bounds due to sensor or actuator

saturation. For instance, a desired force mean subject to force sensor saturation can

be modeled with the truncated exponential distribution.

In effect, the set of specifications (Sz)) include into the design an allowable

level of uncertainty. The MEM facilitates the expression of this design uncertainty

as a Shannon entropy. Once formulated in this manner, several important concepts

from information theory may be invoked. For instance, information theorists have

long noted that entropy is analogous to information. Consequently, the specifica-

tions needed for reliable operation may, through MEM analysis, be incorporated

into information flows within an Intelligent Machine. Moreover, Saridis [48] defines

knowledge as a form of structured information. As a result, the knowledge embodied

!
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in the designspecifications can be mathematically representedthrough the infor-

mation the.oreticapproach. A method for utilizing this knowledgeas a criteria for

reliable control and sensorfusion is presentedin the ne._tsection.

2.2 Selection of Feasible Plflns

The entropy formulation of the specificationsallows well developedconcepts

from information theory and intelligent control theory to be combined and utilized

in the plan selection. By propagating the entropiesof distributed sensorreadings

to the control coordinate frame and fusing theseentropies with that of the con-

troller, the total entropy H(control, sensing) can be compared to the maximum

entropy allowed by the specifications, H(specification). If H(control, sensing) ex-

ceeds H(specification), then that set of sensing and control may not be capable of

reliably meeting the specification, and will therefore not be included in the feasible

algorithms, Ale_, = { AI_ _ , Afe_2, . . . , AI_,,}. This induces a formal definition for

feasible plans:

Definition: Given an explicit task to be executed, and a subset of control

and sensing algorithms, Ai = {Ci, Si), corresponding to that task, A, is

a feasible plan (denoted by A]_,) if the entropy constraints

H(A,,) < H(sk) (2.3)

are satisfied for all of the specifications, sk, k = 1,...,m. H(A,,) is the

entropy of .4, in responding to the k ta specification, and H(sk) is the

uncertainty embodied in the k th specification.

This definition yields a set of entropy constraints which must be sa.tisfied to ensure

reliable operation. Thus once all entropies have been determined, finding those

plans which are feasible can be accomplished in a straightforward manner from the

entropy constraints as depicted in Figure o.1.
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Figure 2.1: A Flowchart for Selecting Feasible Plans.

START

1
From the set of specifications,

SD = [si,...,sm],use Jaynes Maximum

Entropy Method to obtain the set of

specification entropies,

Hs_=[H(sl),...,H(s_)]

L
n = the # of low level plans

i = 1

No

Combine the models of sensing and

control with the current statistical

state of the environment to produce the

set of planning entropies,

HA, = [H(A,,),...,H(A,_)],

corresponding to S D .

END ]

l

I

If H(.4,_)_ H(sk) for all

k=l,...,m then Ai is a

feasible subset.

I i=i+l I
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Intuitively, equation (2.3) implies that the uncertainty regarding a feasible

subset's ability to meet each design criteria must be less than the permissible level

of uncertainty embodied in each design specification. To be more concrete, consider

what is perhaps the most common design scenario- a specification consisting of a

tolerance range (a, b) and a feasible plan whose response is A ,-,, N([a + b]/2, or2).

This may represent a positioning tolerance, a desired force and safe bounds, velocity

constraints, etc. For feasibility, (2.3) and Table 2.1 imply that

In < ln[6- a] (2.4)

or, equivalently

m 9 "4.133 < b- a (-.o)

For this problem, the reliability is the probability that A stays within the tolerance

range, i.e.

R = Pr{a < A < b} (2.6)

Since the response distribution is Gaussian, the reliability is easily found:

(b-a)R=2¢ -1 (2.7)

where ¢(.) is the standard normal cumulative distribution function. The worst

case reliability allowed by (2.5) is 4.13a = b- a which produces R > 0.96. Thus

the entropy constraints (2.3) yield at least 0.96 reliability' for Gaussian responses

subject to tolerance specifications. Consequently', the implicit reliability contained

in the entropy constraints is sufficient to ensure satisfactory performance for this

example. Lower bounds of the reliability implied by satisfaction of (2.3) for a class

of distributions subject to tolerance specifications are derived in Appendix A.

Satisfying the set of entropy inequalities puts the plans through a threshold-

ing process. As long as the thresholds are met, then a lower bound reliability is

guaranteed for tolerance (Appendix A) or quadratic (Section 4.3) specifications. In
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addition to the thresholding process,it is possible to order the plans according to

their entropy levels. The plans with the least entropy can then be analyzed first by

the reliability analysis stage. The analysis is then considered complete when a plan

of sufficient reliability is found. This approach is very similar to the entropy based

planning in Saridis and Valavanis's Hierarchically Intelligent Machine [46].

Note that the mean of the plan and that of the specification are identical for

the examples considered. This ensures that the plan uncertainty and the specifica-

tion uncertainty pertain to the same physical parameters; without this property, the

unmodified entropy constraints can allow less reliable plans to be regarded as feasi-

ble. Typically, the desired specifications require that the mean value of the plan's

response is equal to a particular value. In this case, if the mean of the plan is not

equal to the mean of the specification, then the desired specification is not satisfied.

Thus the plan is immediately excluded from the feasible set. One exception to this

rule is the specification consisting only of bounds, [a, hi. Since a plan's response is

acceptable if it occurs anywhere within the bounds, the plan's mean could conceiv-

ably be anywhere within the bounds while maintaining reliable operation. Reliable

entropy constraints can be found by mapping the desired specification to a new

specification which has a mean equal to the plan mean. The new specification can

be found by retaining the specification bound which the response mean is closest to

and matching means. For instance, suppose the i th plan's mean in responding to

the jth specification (consisting of bounds [a, b]) is _A,. Since the MEM indicates

that the uniform distribution corresponds to this specification (Table 2.1), the mean

of the specification is (a + b)/2. If _A,, > (a + b)/2, then the upper bound of the

specification, b, is preserved. Next, the mean of the new specification is made equal

to the mean of the plan. If [a', b'] denotes the new specification, then this procedure

results in two equations

b'= b (2.8)

!

|

!



21

a' + b'

2 = #A,., (2.9
I

These two equations are solved simultaneously to produce the new specification,

[at, b'] = [2#A, 1 -- b,b].

[a',b']= - a].

specification.

Similarly, if #A,, < (a + b)/2, then the new specification is

The technique is applied in the case study to the timing

2.3 Advantages of the Information Theoretic Approach

The information theoretic approach to reliable control and sensor fusion holds

several advantages over other methods of analysis. These advantages can be divided

into three categories. First, the entropy associated with many sensed features useful

in robotics is invariant with respect to coordinate frame transformations. Second,

since the MEM is a well developed tool of statistical inference, it provides exact

methods of handling uncertainty for any distribution. Third, because entropy can

be interpreted as information, it provides a consistent representation throughout all

levels in a hierarchically Intelligent Machine.

First, consider entropy in the presence of coordinate transformation. The

joint entropy of many diverse types of measurements are invariant with respect to

coordinate frame transformations [28]. This is easily shown by noting that the joint

entropy of a random vector xj = g(zi) is found by [35]:

H(x)) - H(x,) + E{ln Idet(J)l} (2.10)

where J is the Jacobian of the uniquely invertible transformation g(.). J = V,g(x).

For coordinate transformations, zj = g(x,) = T[z, ([11]) where xj is a point rep-

resented in the jth coordinate frame, zi is a point represented in the i th frame,

and

T/= n o a q = n q (2.11)

0 0 0 1 0 1
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where n, o, a, and q are vectors, and R is an orthonormal rotation matrix. The

Jacobian o__fthis transformation is simply" J = T/. Since R is orthonormal, det(J) =

det(R) • 1 = 1. Substitution into (2.10) then yields H(zj) = H(zi). This fact

was first noted by Kyriakopoulos [28]. Kyriakopoulos also found that the result

could be generalized far beyond mere 3-D points to include parameter vectors of

several common geometric features: lines, planes, and spheres. In this formulation,

a geometric feature such as a line is represented as a point (parameter vector)

in parameter space following Durrant-Whyte [8]. The joint entropy of the entire

parameter vector is then invariant with respect to coordinate frame transformations.

The transformations for several useful entropy invariant parameter vectors are listed

in Table 2.2.

The method can also be extended to include six dimensional quantities such as

oriented points in Na or force vectors. If pi = r'}(pi) represents the transformation

of the oriented point pj in frame j to frame i, then J has a highly structured form

[8]:

\
J

!

[ Rr ° I |J=J;= M R T (2.12)

where R is the rotation matrix previously defined, the oriented points are represented

as 6x! vectors with the orientation stacked on top of the position, and

M = qxn qxo qxa (2.13)

This implies that det(J)= det2(R)= 1. Thus E{lnldet(J)l } = 0 and from (2.10)

the joint entropy" is again invariant with respect to coordinate frame transformations.

This invariance with respect to coordinate frame transformations is very im-

portant when comparing and combining sensor readings distributed over many dif-

ferent coordinate frames- a very common situation in advanced robotic systems. To

illustrate, cameras are often mounted on gimbals or on a link of the manipulator.

!
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Feature Equation Parameters Transformation

Point .. p = [x y z 1]T

Line r(t) = ro + td p = [ d T roT 11T

Plane nT(r--ro)=l p=[ro T 1 nT] T

Sphere ]] r- c ][= d p = [cT 1 d]r

Circle

Oriented

Point

Force

Table 2.2:

rlT(r -- To) -- 0 p= [n T rTo 1 CT 1 d]T

p: -- T_pi

NIl -cll=d

o-I
0

P,
0

1

p: = 0
L

Td
p: = 0

T/
p: = 0

0

PJ : 0

0

o-
T� Pi

0

R! P;

0

1 P'

0 ..... 0

T{ 0

0 T[

0 0

p=[GO O-xyz]r p;=U(p,)
J = J[

p = [7" F] r P: = Jj' Pi

Features which display coordinate frame entropy invariance

\

Similarly, mobile robots perceive the environment from constantly changing posi-

tions. Even if the sensor itself is immobile, the relationship of the sensor with respect

to the end effector's coordinate frame will vary as the manipulator position changes.

In addition, often several different sensors are distributed throughout the workcell.

For instance, a laser range finder often complements a stereo vision system. The

efficient fusion of such measurements is of great importance.

Since modern robotic systems contain many sensors distributed over a vari-

ety of different physical locations which may change with time, transforming these

diverse sensor readings to a common coordinate frame has posed one of the fun-

damental issues of sensor fusion research. Recently, attention has been focused on

transforming both the sensed measurement and the uncertainty regarding that mea-

surement, as the uncertainty may be used in the fusion of sensor readings. Most

authors have expressed this uncertainty through the covariance matrix [8], [52].

A more compact and useful representation of the uncertainty is Shannon's entropy.
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tions.

[8]:

Shannon's definition of entropy has gained wide acceptance because it complies with

a heuristic_understanding of uncertainty and provides a mathematical framework to

express this uncertainty [3.5]. Moreover, entropy can be used in estimation to replace

covariance statistics [23], [92].

In contrast, the co_xriance matrix varies under coordinate frame tvansforma-

Propagation of the covariance matrix can be approximately calculated as

= (2.1,4)

where C_ is the covariance in the ]th frame, d[ is the Jacobian matrix of the coor-

dinate transformation defined in equation (2.12), and C, is the covariance in the ,.th

frame. As a result, in order to evaluate the performance of a distributed sensor in

the control frame using covariance analysis, it is first necessary to calculate the Ja-

cobian between those frames, and then find the propagated covariance using (_9.14).

In contrast, since the joint entropy is invariant with respect to coordinate frame

transformations, it is not necessary to find the Jacobian when using entropy based

analysis. Because many different measurements are often available at a variety of

coordinate frames, this simplification makes comparison between alternative sensing

strategies much more computationally tractable. In all fairness, it must be stated

that the complete covariance matrix is sometimes a useful quantity to be propagated

in its own right. This is especially true when the desired specifications concern in-

dividual elements of the feature's parameter vector. However, even in these cases.

the information theoretic approach still holds several important advantages.

To be explicit, the information theoretic approach is advantageous because it is

a well developed statistical inference technique. As a result, the wealth of previous

knowledge contained in information theory literature may be immediately drawn

upon. For instance, the entropy formulation expresses uncertainty in a meaningful

!
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fashion for any probability distribution. In contrast, propagating merely the covari-

ance is sufficient in expressing the uncertainty only for certain distributions such as

those listed in [23]. Other distributions require higher order moments for complete

analysis of the uncertainty. In addition, I(alata [23] notes that

A significant result obtained from the characterization of communication

systems using information theory is that performance bounds can be es-

tablished independently of coding procedures. A similar result is possible

when information theory is applied to the general estimation problem:

independent of the estimation procedure, a performance bound can be

specified.

Thus, when fusing sensor measurements, the entropy scheme allows determination

of the estimation performance bounds. This knowledge is useful for determining

sensing strategies of sufficient accuracy.

The final advantage which the unification of reliability and entropy concepts

presents is the consistent representation of uncertainty throughout all levels of a

hierarchically Intelligent Machine. Since entropy can be regarded as information,

it is a sufficient analytic measure that unifies the treatment of all the levels of an

intelligent machine [48]. This implies, for instance, that, in an impasse, the higher

level Organizer may re-design the problem, thus generating new specifications for

the lower level reliable control and sensor fusion. An iterative design procedure is

then possible in the spirit of Koomen [26]. In addition, since entropies are produced

for each feasible subset and each specification, the techniques have great potential for

integration with other well established results of Intelligent Control. For instance,

if a positioning specification is phrased in terms of a maximum integral error, then

it may be possible to make use of entropy formulations of optimal control [45].



3. RELIABILITY ANALYSIS OF FEASIBLE PLANS W

When a high degree of reliability must be assured, a second stage of analysis which

explicitly calculates the reliability (R,) corresponding to each feasible subset (.41_,,)

is necessary in addition to the entropy based elimination procedure. Just as the

specifications play an integral role in the determination of feasible plans, SD also

greatly influences Ri. The set of specifications may include constraints on total ex-

ecution time, positioning accuracy, maximum overshoot, robustness, tracking errors

etc. Each element of the specifications, sk, represents a desired characteristic to

be achieved during task execution, while Ri incorporates all of these criteria into a

single term and measures the probability that they will all be satisfied. This mea-

surement is accomplished by first calculating the reliability of the plan in responding

to each separate specification (Rik, k = 1,...,m). Next, the individual reliability

terms are combined to form Ri.

3.1 Calculation of Reliability Terms

The individual reliability terms (Rik) can be found by first defining reliabil-

ity performance functions (RPF), 9ik, associated with each feasible subset. AI,_,,,

and each specification, sk. Often, this is the most arduous phase of the reliability

analysis, as it requires capturing the probabilistic behavior of a particular algorithm

and expressing it in terms of the desired specifications. The performance functions

should be defined in such a manner that

[g,_(z) > 0] _ success (3.1)

[gik(z) < O] _ failure

where z is a Vector of state variables.

(3.2)

!

|

26



27

Once each RPF is defined, the statistics associated with the current state of

the environment can be used to find the reliability, R,k, of the particular subset

Aj-,_, in meeting the desired specification sk. If the form of the underlying dis-

tribution for the state variables is known (based on prior experience), while the

distribution parameters must be found from statistical sampling, then maximum

likelihood estimation may be applied.

Maximum likelihood estimation is useful because under certain regularity con-

ditions it possesses several compelling advantages. The regularity conditions are

not very restrictive. In short, if samples {zt, z_, ..., :rk} are taken from an underly-

ing cumulative distribution function P(z; e), where e is a distribution parameter to

be estimated, then the maximum likelihood estimate of e, _., meets the regularity

conditions if P(z; e) is regular with respect to its first two e derivatives (directional

derivative) and _ is unique. P(x; e) is regular with respect to its first e derivative if

E{S(z;e)} = _e dP(z;e) =0 (3.3)
Oo

where

0

S(z; e) = -_e log dP(z; e)

P(x; e) is regular with respect to its second e derivative if

02/_ '_+ E{S(=; e)} alP(=;e) = 0=_e 2 ¢_

where

(3.4)

(3..5)

3

S'(z; e) = _eeS(X;e) (3.6)

Consult [64] or [65] for a rigorous treatment of maximum likelihood estimation.

Under these conditions, the maximum likelihood estimate (NILE) is asymptotically

normal, consistent, and asymptotically efficient. Furthermore, for a function of e,

f(e), the MLE is given by the invariance property to be f(_) [65]. The distribution

of the function is

](a) _- A:V(f(a), vTf(a)Cov(_)V,f(a)) (3.7)



where

• f(_)is the MLE of f(_),

• AN indicates asymptotic normality,

• V_f(_) is the gradient of f(_) with respect to _, and

• Cov(_) is the covariance matrix of _..

Consequently, if the regularity conditions are satisfied for the underlying dis-

tribution, then fi'om the sample ensemble {zl, z2, ..., xk} it is possible by maximizing

the likelihood and using (3.7) to find an asymptotically normal maximum likelihood

distribution for .qik(X). Since the distribution is asymptotically normal, it is a simple

matter to then find the reliability corresponding to the RPF.

If maximum likelihood estimation cannot be used, a lower bound on R,k may

be found from the reliabilify index. A lower bound is extremely useful, as it pro-

vides a guaranteed minimum level of reliability. The disadvantage, of course, is

that the lower bound can be a conservative estimate of the actual reliability. The

reliability index, fl, is defined as the minimum distance between the origin of a set

of uncorrelated standard normal variates (derived from x), and the failure surface .

g(x) = o.

Consider the case in which the individual state variables, denoted now as xi,

are uncorrelated, Gaussian random variables. The variables can be replaced bv a

set of reduced variates with the transformation:

I Xi -- I.tz,
z, = ; i = 1,2 .... , n (3.8)

O'_: I

where tt,, is the expected value of the i th random variable, and o',, is the standard

deviation of the i *h random variable. To estimate the reliability, Shinozuka [49] has

shown that the point on the failure surface (g(z) = 0) with the minimum distance to

the origin of the reduced variates, z', is the most probable failure point. If g(z) is a

\
w
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\

nonlinear function, the reliability index may be used as an approximate measure of

reliability b.y placing a lower bound on the reliability. For linear g(x), the reliability

can be found exactly from the reliability index.

Determining the reliability index, 3, may require iterative methods for nonlin-

ear performance functions. In contrast, linear performance functions have a closed

form solution. Suppose that the performance function is represented as:

g(x) = ao 4- __, nix, (3.9)
i

where the ai's are constants. Note that the reliability performance function may be

negative, although this possibility corresponds to a system failure. The minimum

distance to the origin of the reduced variates is then [1]:

= ao + _,i nips, (3.10)

For linear performance functions, the reliability can be found directly from the

reliability index by the formula

R= ¢(Z) (3.11)

where @(.) is the normalized, zero mean, Gaussian cumulative distribution function

and R is the reliability. The minimum distance for nonlinear RPFs can be found by

iteratively searching for the minimum of

--_gTx'

= _//)'='VgrVg " (3.12)

subject to

g(x')=O (3.13)

where _Tg is the gradient vector of g(z) with respect to x', and T denotes the

transpose. Parkinson [37] offers a method for efficient solution to the minimization.

If g(x) is concave toward the origin of the reduced variates, then [39]

< R _<¢('d)
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On the other hand, if g(z) is convex toward the origin, then

¢(3) _( R < 1 (3.15)

where X_(.) is the chi-squared distribution function with n degrees of freedom. If

the RPF is neither convex nor concave, (3.14) may always be used as a lower bound

on the reliability. Figure 3.1 graphically depicts the bounds for a two dimensional

problem.

Should the variables be correlated, the solution is still possible. However,

the covariance matrix must be used [49]. For non-Gaussian variates, Ang [2] and

Parkinson [39] explain techniques for transforming the variates to an equivalent

Gaussian system.

!

3.2 Combination of Reliability Terms

Once the reliabilities in meeting each individual specification have been found,

the ability of the potential algorithms (AI,_, ,) in meeting the desired specifications,

SD, depends on the relationships between the elements of SD. In the majority of

cases, the elements sk will have a series relationship, i.e. the success in meeting

requirements will depend on all specifications being satisfied. Occasionally, the

elements may have parallel relationships. For instance, it may be desired to either

meet a desired overshoot, or a desired execution time. Since meeting either criteria

is termed a success, the relationship is parallel.

To allow ease in combining reliabilities, as well as to accommodate information

flows within Intelligent Machines, a new concept is now defined. The reliability .self

information (RSI), I(R), is

I(R) = - log R (3.16)

, while the failure self information is

I(F) = - log F (3.17)

!
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Geometrics of the Reliability Index

Concave fail_e"

surface

Convex failure surface

• . g(x)<0 (failure)

"-_, Linear failure surface

g (x)>O g(x)--0

(SUCCESS)

Figure 3.1:

mensions

A Geometric Picture of the Reliability Index for Two Di-
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where F is the probability of failure, i.e.

F=I-R (3.18)

The base of the logarithm is arbitrary, as different bases will simply add a constant

bias. Since these quantities are measures of self information, they enjoy many of the

same properties which entropies do. For instance, multiplication can be replaced

by addition, etc. The information theoretic setting makes RSI easy to interpret in

terms of Intelligent Control as proposed by Saridis [48]. The flow of knowledge re-

sulting from the reliability self information complies with the principle of Increasing

Precision with Decreasing Intelligence [46].

Once the reliabilities Rik have been found, it is a simple matter to find the

corresponding RSI's, I(R_k) from (3.16). It is also a simple matter to find the RSI

of the entire subset if its elements are in a series relationship. The reliability of a

series system (assuming independence) is [2]

R, = R1R_...P_ (3.19)

where R, denotes the reliability of the i th component. The RSI for a potential subset

of algorithms A]¢_, ' corresponding to n specifications (sk) in a series relationship is

found by combining (3.19) and (3.16):

I(R,) = _ I(R,_) (3.20)
k..---1

Thus multiplication is replaced by addition when using RSI terms. On the other

hand, if the set of specifications, Sz_, contains parallel relationships, the parallel

relationships must be simplified to one series term before (3.20) can be used. The

reliability of a parallel arrangement (assuming independence) is:

R, = i - I-i(1- R,) (3.21)

!

!

|
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Rewriting (3.21) in terms of failure probabilities, we find

F = 1-I F, (3.22)
i

The total failure self information of a parallel connection can be found from (3.17)

and (3.22)

I(F) = _ I(F,) (3.23)

As before, addition replaces multiplication. The RSI can be found from the failure

self information by the simple formula

I(R) = -log(l - exp[-f(F)]) (3.24)

The RSI found from (3.24) and (3.23) is the equivalent RSI of the parallel set of

specifications, so it can be combined with specifications in series with it using (3.20).

Naturally, once the RSI, I(Ri), is found for each subset of feasible algorithms,

AI,_ ,, the performance of the alternate plans can easily be compared. The smaller

the RSI, the more reliable is the plan. In a more qualitative sense, the set of de-

sired specifications operates on the feasible algorithms to produce a set of reliability

performance functions. The environment then operates on the performance func-

tions to produce a reliability self information (Figure 3.2). Figure 3.3 outlines the

reliability analysis procedure in a flowchart form.

To clarify these concepts further, the case study performs this analysis in detail

for a robotic problem of practical significance.
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Figure 3.2: A Pictorial Description of the Reliability Analysis Procedure
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Define :

START

i
AI,o, = {afoo_,..., AI_o,_}

S_ = {,_,...,_,,,}
RPF = {g_,...,9,_}

.1
i=1

k=l [

Find overall I(R,) by

combining series and

parallel relations

between I(Ri_) terms.

N

Select a plan

that has an

acceptable

I(R).

Y

I
Determine _3,kand R,k:

2
Nonlinear: R > Xn(3ik)

Linear: R = P(_ik)

I ( R,k ) = - in(R,k)

I t
i=i+l k:k+ I

I [

Figure 3.3: The Reliability Analysis Procedure



4. RELIABILITY ANALYSIS OF DISCRETE TIME-INVARIANT

CONTROL SYSTEMS

W

The reliability analysis techniques developed herein have focused on the types of

specifications traditionally found in manufacturing environments, i.e. tolerance

ranges, mean and variance criteria, etc. These specifications constrain principally

the final state and extreme states, thus they can be met successfully with classical

control tools such as steady state error and overshoot. By contrast, often the be-

havior of a system must be ensured over a time segment. Moreover, in robotics it is

very important to be able to specify the behavior of a multidimensional system.

The performance of a system over a time interval is measured in optimal

control theory as the value (termed cost) of a functional defined over that interval

(termed the performance function). If the performance function is defined to be the

integral of a quadratic function of the state variables and the system is linear, then

the control which maximizes performance (as defined by the performance function)

can easily be found.

By using nonlinear feedback, Tam [57] has proved that robotic manipulators

may be viewed as linear time invariant systems. Consequently, if a quadratic perfor-

mance function is defined, then the optimal control for the i *a sensing system can be

found and the expected cost corresponding to that control and sensing strategy can

be evaluated. Although the expected cost can be calculated, techniques have not

been previously developed to determine the reliability of a control system in meet-

ing a set of specifications. This chapter derives a lower bound reliability in meeting

quadratic constraints on the error of discrete time invariant control systems.

I

!
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4.1 Problem Statement

The _iotation used will be very similar to that employed by Hsieh and Skelton

[18], as the concepts developed here might be used in conjunction with their ideas

to form a powerful design technique.

The time invariant discrete plant is denoted

zp(k + i) = Apzp(k) + Bpu(k) + Dpw(k) (4.1)

z(k) = M_zp(_) + Ep,(k) (4.2)

where xp E _'_, u E _"_, z E _'_" are state, input, and measurement vectors,

while w(k) E _.'_ andv(k) E _ are zero mean white Gaussian noise sources with

covariance matrices W(k) and V(k), respectively. The plant is controlled with a

dynamic compensator of a specified order nc

_:c(k+ l) = Ac_:c(k)+ Boz(k) (4.3)

u(k) = C¢zc(k) + D¢z(k) (4.4)

The initial condition of zp and z, is assumed to either be deterrninistically known

or normally distributed.

In order for operation of the system to be considered successful, the following

set of weighted square norm specifications must be satisfied:

_: Z(_)Q(_)_(k) < _, k = l, ...,_ (4.5)

where x E _P+'_ and

The equations describing the evolution of z are, from (4.1-4.4)

(4.6)

•(_+ i)= A,_(k) + D**,(k) (4.,)
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where vl(h) = [wY(k) vr(k)] T,

Aa =

3

A v + BpD_Mp BpC_ [ (4.S)
JB _3,lp A _

Dp BpD,Ep l
D,l = (4.9)

0 BcEp

4.2 Reliability Bound for Weighted Square Norms of Zero Mean Gaus-

sian Vectors

In order to assess the reliability of meeting the quadratic specifications (4.5),

a general bound on the reliability of meeting a single weighted square norm will first

be derived. This result is in itself useful, as many applications require the evaluation

of only a single weighted norm. The analysis is performed by finding the reliability

of meeting a very special weighted norm.

Theorem 1 If x ... N(O, C=), x 6 _'_, then

P{zTc21z < d} = x_(d) (4.10)

where X_(') is the chi-squared cumulative distribution function with n degrees of

freedom.

Proof:

Since C_ is a covariance matrix, C_ 1 is symmetric and positive definite. There-

= c [51.fore, it can be uniquely factored into the Cholesky decomposition. C21

Let y = Cz. Then

E{y} =0

Coy(y) = CGC T = c(cTc) -_ C r

(4.11)

(4.12)

where E{.} denotes the expectation operator, and Coy(.) denotes covariance. Then

Cov(y)C = c(crc)-tCTC = C (4.13)

!

1

|



39

Therefore Coy(y) = I, the nxn identity matrix. Linear transformations of Gaussian

variates are also Gaussian [35], thus

y ... N(O,I) (4.14)

The weighted norm can be rewritten

xrc;,x = zrCrC : = = + +... + = (4.15)

The elements ofy are uncorrelated from (4.14), but this implies they are independent

for Gaussian variates. Hence (4.15) is a sum of n squared, independent, standard

normal variates. From [35], this implies that X _ has a chi-squared distribution with

n degrees of freedom. Hence

p{zTc;,z = yZy <_ e'} = X2,_(e2) -v/ (4.16)

Thus if the weighting matrix is equal to the inverse of the covariance matrix,

then the reliability can immediately and easily be found from tables of the chi-

squared distribution. Of course, in general, the weighting matrix used to form

a specification arises from physical needs and will not be related to the inverse

covariance matrix. For instance, suppose that the vector z is a 6 dimensional pose

error in a robotic system, with the first three elements representing the orientation

and the last three elements representing the x,y,z position. The task at hand may

require high positioning accuracy in the ':x" direction, while the other directions

and orientations are much less important. Then the weighting matrix, Q, should

reflect this need for accuracy. Fortunately, Theorem 2 uses Theorem 1 to derive

conditions under which a lower bound on reliability can easily be found for a class

of weighting matrices Q. As such, Theorem 2 is a major contribution of this work.

Theorem 2 If z .,. N(O,C_), x E _, and C; 1 - Q :> 0 (the difference between

C; 1 and Q is positive semi-definite) then

P{zTQz <_ e:} _> X2,,(e2) (4.17)
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Proof:

The _matrix C_-1 - Q is positive semi-definite, therefore xT(c_ x -- Q)x >_ 0 or

xTC_x > xTQx. By Theorem 1, P{zTc_lz <_ e=} = X_(e=). But if x is inside the

hyperellipsoid defined by xTc_1z • <_ e2, then the inequality zTQz < e: is also true.

Thus

P{zTQx < e:} >_ P{xTc[Iz <_ ca} >_ x_(e =) x� (4.18)

Theorem 9 is useful for analyzing many robotic tasks. For instance, suppose

statistics for the error due to imperfect kinematic transformations are known. Then

a lower bound on the probability of meeting a desired weighted square positioning

norm can be found.

I

!

4.3 Entropy Constraints for Selection of Feasible Plans

Entropy has been proposed as a computationally efficient method of selecting

feasible plans in a robotic system [34]. This section extends the technique to handle

specifications consisting of a weighted square 12 norm of a zero mean Gaussian

random vector, and shows that the resulting entropy constraint yields a reliability

which depends only on the dimension of the weighted vector.

Feasible plans are defined in terms of a set of entropy inequalities via (2.3).

This definition yields a set of entropy constraints which must be satisfied to ensure

reliable operation.

In order to use (2.3), the entropy of both the plan (simply a zero mean normal

response for the case considered now) and the specification (a weighted square 12

norm) must be found. The specification entropy is found in accordance with [34] by

using Javnes Maximum Entropy' Method. In order to find the maximum entropy

distribution, Theorems 3 and 6 have been developed.

Theorem 3 Given the constraint that a random variable z E _'_ lies within the

!

!
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hypersphere xTx <_ _2, the Jaynes maximum entropy distribution is given by

{ i/_/_(_ ) , xTx < _2
f(z) =

0 , otherwise

with entropy

H(_) = InV_(_)

where W_(e) is the hypervolurne of a n-dimensional hypersphere of radius e.

(4.19)

(4.20)

Proof:

If f(x) and g(z) are two arbitrary probability densities, then [35]

Assume that

then the entropy of x is

F F- g(_) Ing(x)dz < -

g

f(x) = _ i/I,_(_)

t 0

g(x) In f(x)dx

, xTx _ £2

, otherwise

H(I(z)) = - L_:<_ in[V_(_)]-'IV.(_)d_ In[V_(_)]LT:<<_

Now suppose g(z) is any other density such that

Then, by (4.21),

(4.21)

(4.22)

dx = In[V.(_)] (4.23)

L g(z)dx = (4.24)1
TZ<_¢_

g(x) ln[t'_ (_)]-' dx

= H(f(x)) (4.25)

H(g(z)) = - f::r:<ag(z) lng(z)dz < -L
-- _ T r_¢2

= In _;,(_)I=T=_<<:g(z)dx

Thus the entropy corresponding to any distribution other than f(x) is less than or

equal to the entropy obtained by f(x), and f(z) is therefore the maximum entropy

distribution, v/

Theorem 3 can easily be generalized to hyperellipsoids, rather than spheres.
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Lemma 4 Given the constraint that a random variable x E _'_ lies within the

hyperellips-oid zrQz < e2, Q > O, the Jaynes mazimum entropy distribution is given

by

with entropy

f(x) = I 1/l_(e)

( 0

, xTQx < e2

, otherwise
(4.26)

H(z) = In Vn(e) (4.27)

where V,_( e) is the hype_'olume of a n-dimensional hyperellipsoid of radius e, xT Qx <_

_2

The proof is identical to Theorem 3, except all integrals are taken over the hyper-

volume xT Qx _ e2

Lemma 5 Given two random vectors, x E _'_ and y E _.'_, subject to the con-

straints, xT Qx < e2, yT py __ e2, Q > O, P > O, P - Q >_ o, then

H(y) < H(z) (4.28)

where H(y) and H(z) are the entropies found from Jaynes MEM for y and z.

respectively.

Proof:

Since both Q and P are positive semi-definite, x and y are constrained to be

within hyperellipsoids. P- Q >_ 0 implies that xrQz <_ xTpx __ e2, thus the hyper-

ellipsoid formed from the weighting matrix P is entirely within the hyperellipsoid

formed by Q. This implies that the volume of Q's hyperellipsoid is greater than or

equal to the volume of P's hyperellipsoid. From Lemma 4, H(y) < H(x) x/

Theorem 6 The hypert, olume inside the hypersphere zrx < e2, z E _" is given by

V_(e) = K,,e" (4.29)

!
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(n - 1)K,__II(,__2
K,_ = , n > 4 (4.30)

nKn_3

and I(1 = 2, Ks = _', K3 = 4_/3

Proof:

(The approach to the proof was suggested by Kostas Kyriakopoulos.)

lines, discs and spheres, the volume is given by

For

v,(_) = 2_(line)

V2(e) = l/l(ecosO)ecosOdO = _e 2 (disc)

- /_'/_V3(e ) i,_(ecosO)ecosOdO = 4r:e3/3 (sphere)
7r/2

In genera[, the volume of a hypersphere can be expressed as

[,_/2 V___(_cose)ccosedev.(_) = _./_

Assume that V,,_I can be written in the form

(4.31)

(4.32)

(4.33)

(4.34)

V._x(_) = I(.__ "-I (4.35)

Then

_'12
V,,(_) = K,,_le" J-:/: cos" Od0 ==>V,,(e) = K,,e"

Since _vl(e ) = I(le', by induction V,(e) = I(,,e".

(4.36)

From a table of integrals,

f cos" OdO = 1 n - 1 f- cos '_-1 0 sin 0 + -- cos "-20dO (4.37)
12 ?2

By" combining (4.35), (4.36), and (4.37), a recursive formula for calculating the K,_

coefficient can be found

I(n err "[(n-1 _n [_12= cos" OdO (4.38)
J-.-,/2
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but

Therefore

::_ J-Tr/2 cosn Od8 - Kn-I

n - I /_I=
n J-Tr/_

cos '_-20dO] (4.39)

2 K_,-2cos '_-_ OdO = -- (4.40)
,_/ 2 I(,__ 3

If. = (n- l)IC._,I(._2 _/ (4.41)
hi(n-3

Theorems 3 and 6 are used along with Theorem 2 to find a lower bound on

the reliability imposed by the definition of feasible plans.

Theorem 7 Given the specification s : zTQz <_ d, x E _", z ._ N(O, C_), C_-1 -

Q >_ o, Q > o then the entropy constraint

H(z) <_ H(spec) (4.42)

(where H(spec) is the mazimum entropy of z consistent with the specification sl •

xTcflx < e2) yields a lower bound on reliability in meeting zTQx <_ e_ which

depends only on the dimension of z.

Proof:

Let y = Cz where C is obtained from C; "I = cTc (Cholesky decomposi-

tion). From the proof of Theorem 1, y --, N(0, I). Since y has a standard normal

distribution, its entropy is easily found [35]

n

H(y) = _ ln2rre (4.43)

Because C arises from a covariance matrix, it is nonsingular. Thus H(y) can be

expressed in terms of z using the formula [35]

H(y) = H(Cz) = H(z) + In Idet(C)l (4.44)

The specification sl : xTc; l:r, __ e2 can be rewritten as yTy _< _2, therefore by

Theorems 3 and 6, the maximum entropy of y subject to the constraint sl is

g(specy) = In _,_(e) = In I(,_e '_ (4.45)

]

|
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Since H(spec) is the maximum entropy' of x subject to the constraint s_.

(4.46)

As a consequence, the entropy constraint H(x) <_ H(spec) is equivalent to

H(y) - InId*t(C)l g(sw ) - in Id t(C)l (4.47)

or H(y) <_ H(svecu). From (4.45) and (4.43), the inequality is

n

- In 2rr,e < in/(,,e '_ (4.48)2

Thus the squared norm threshold, e, must satisfy

V_2v, e)

e >_ K_/, ' (4.49)

in order for the entropy constraint to hold. Using Theorem 1, it is easy to calculate

the reliability in satisfying sl, i.e.

P{=rc;'= <_d} = x (d) (4.s0)

Since cumulative distribution functions are monotonically increasing, (4.49) and

(4.50) imply that the reliability in meeting s_ is at least X_[2ve/(I(_/")]. Also, by

Theorem 2, the reliability in meeting s : zTQx < e2 is greater than or equal to the

reliability in meeting sl. The worst case reliabilities in meeting s, given that the

entropy constraint is met, are listed in Table 4.1. _/

Theorem 7 extends the techniques suggested in [34] to specifications consisting

of weighted norms of Gaussian vectors, and provides a lower bound on reliability

of plans selected as feasible. In robotics, 6 dimensional vectors are very common,

as they" can be used to describe the 6 degrees of freedom available in mechanical

systems. The entropy constraint (4.42) yields a lower bound on reliability of 0.87

for n = 6. Lower bounds for other dimensions are listed in Table 4.1.
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Table 4.1: "Worst

Satisfied

n K.

i 2

3 4.19

6 5.2

-I0 2.6

20 0.025

50 l.Tx10 -13

I00 2.4xi0 -4°

2.07

2.56

3.1

3.8

4.96

7.44

10.3

0.96

0.91

0.87

0.83

0.78

0.72

0.68

Case Reliabilities "When the Entropy Constraint is

I

4.4 Reliability of Meeting a Set of Quadratic Specifications

The problem of finding the reliability in meeting the set of specifications S =

{Sl, S2,... , Sg} given in (4.5) has not been solved exactly. Rather, a lower bound on

the reliability has been found by employing Theorem 2 and the positive correlation

between the specifications.

Theorem 8 Given a discrete time system described by (4. i - 4./,) or (4.7) with the

property Q - ATQAtl > 0 where Q > 0 is a constant matrix, then

P(s +llsls2... sk) >_P(sk) (4.51)

i.e., the specifications are positively correlated.

Proof:

The probability density function of z(k) given that the specification at sample

k has been satisfied is given by the continuous form of Bayes theorem to be [35]

f_(_l(z(k))P(s_l.X'(k) = z(k))

A  l(x(k)l k) = P(s ) (4.52)

!
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whereX(k) denotes the random value of x(k). But since X(k) is known to be within

the hyperellipsoid,

(

P(sk]X(k) = z(k)) = _ 1 ,

[ 0 ,
(4.53)

therefore

f.(k)(z(k))/P(sk) , zr(k)Qx(k) < e2
(4.54)

0 , xr(k)Ox(k) > d

In other words, f_(kl(x(k)[sk) is concentrated entirely in the success region defined

by zr(k)Qz(k) _< d. Now divide z(k + 1) into two components, the component due

to the previous state and the component attributed to noise, i.e. let

.(k + 1) = A._(k) (4.5.5)

\

• N(k + 1)= D.v,(k) (4.56)

Since Q - A_QAa >_ O, zr(k)Qz(k) >_ xT(k)A_QAaz(k). This implies that the

weighted square norm of x,(k + 1) given sk is inside the success hyperellipsoid

because

z_(k + 1)TQa:_(k + 1) = zr(k)ATQAax(k) < zr(k)Qz(k) < e2 (4.57)

Thus if noise is not present, then sk =*" sj, j > k. The noise is white, therefore vt(k)

will not be affected by the fact that sk has occurred. Hence the conditional density

x(l; + 1)[sk is given by

.f_(k+l)(X( _: -_ l.)lSk ) _- _.(k+l)(Za(k -[- l)[Sk) @ fx.v(k+l)(gN(_ at- 1)) (4.58)

where ® denotes n-fold convolution. The conditional density f_,(k+_l(z,(k + 1)lsk)

is derived from (4.54) and (4.55), thus from (4.57) it is concentrated in the success

hyperellipsoid. The density f,,,dk+l)(zx(k+l ))is zero mean Gaussian since vt(k) and
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z(0) are Gaussian. As a result, the convolution of the densities, f=(k+l)(x(k + 1)tsk )

is more con_centrated in the success region than f=(k+l)(z(k + 1)). Hence

P(sk+,) ('4.593

In addition, since vt is zero mean white Gaussian noise and the system constantly

reduces the weighted square norm of the previous state, P(sk+llsls2...sk) >_ P(sk)

,/

Positive correlation of the specifications can be used to find a lower bound

reliability for (4.5).

W

Theorem 9 Given a system defined by (4.1 - "_.4) or (_.7), with state covariance

matriz Cx{k) = E{x(k)xT(]c)} and a set of specifications

_k: xr(k)Q=(k) < d, k = 1,...,N (4.6o)

where C:_'-(xk)- Q >_ O, k = 1,...,N, Q > O, and Q - ATQAa >_ 0 the reliability of

meeting the specifications (,_.60) has a lower bound of

R > [x_(e2)] 'v (4.61)

!

Proof:

Since C=-_,)- Q >_ 0 and z(k) is a zero mean normal variable, by Theorem 2

P(sk) >_ X2,_(e2) (4.62)

By the chain rule of probabilities,

R - P(a_s=... aN) = P(sa)P(s2ls_)P(aals_s2)"" P(sN]SlS2''-s_v-1)

Theorem 8 shows that P(sk+,ls_s2...s_) >_ P(sk). Therefore

(4.63)
|

R >_ P(sl)P(s2)"" P(s,v) (4.64)

!
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From (4.62), this implies that

n _> ,/ (4.65)

In order to use Theorem 9, the closed loop system must satisfy the constraint

Q- ATQA,t >_ 0 (4.66)

One method of ensuring that (4.66) is satisfied involves first picking an arbitrary

matrix Q1 E N,_x,_ such that Q1 > 0. A weighting matrix Q can then be found by

numerically solving the algebraic Lyapunov equation

Q- ATQA_I = Q1 (4.67)

for a positive definite real symmetric matrix Q. Such a solution exists for (4.67) as

long as z(k+ 1) = Aaz(k) is asymptotically stable [27]. In the case study simulation,

Q1 is chosen as Q1 = kI, where k is a positive integer scaling the identity matrix.

The Q matrix found from (4.67) does not, of course, have any relationship to

the specifications. Lemma 10 allows Q to be related to the specifications.

Lemma 10 Given a system defined by (4.i - -L4) or (_.7), with state covariance

matrix C,.ik I = E{x(k)xr(k)} and a set of specifications

sk : :cT(k)Qd(k)z(k) <_ d, k = 1,... ,N (4.68)

-1
where C_(k)- Qd(k) >_ O, k = 1,...,N, Q- ATQAtL > O, Q > O, Qd(k) > O, Q-

Q_(k) >_ O, k = 1 .... , N the reliability of meeting the specifications (4.68) has a

lower bound of

R > [X_(C2)] '_" (4.69)

Proof:

Since Q- ATQAtl > O, the system monotonically moves into the hyperellipsoid

defined by xT(k.)Qz(k)d. From Q - Qe(k) _> O, k = 1.... , N, if the specification
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sq, : xT(k)Qz(k) <_ _2 is satisfied, then sk " xT(k)Qa(k)x(k) <_ _2 is also satisfied.

As a consequence, the system also moves into the hyperellipsoids ,rT(k)Q,i(k)x(k) <

e_. The s_ specifications are then positively correlated (Theorem 8). Since Cr-_ ) -

Qd(k) > 0, k = 1,...,N, Theorem 2 yields

P(sk) _> X_(_ _) (4.70)

The positive correlation between specifications then implies

R _>[X_(:)]_"_/ (4.7I)

Thus as long as the Q matrix found by solving the Lyapunov equation (4.67)

satisfies Q- Q_(k), k = 1,..., N, then the reliability of hyperellipsoid specifications

described by Q_(k) can be found. Note that this allows treatment of time varying

specifications.

A second lemma treats the case in which the specifications constrain only a

portion of the state variables, obtaining an improved bound over that found directly

by Lemma 10.

-1
Lemma 11 Given the conditions of Lemma 10 ezcept C_(k)

1 .... ,N, if

and

Q_(k)= [ Q_b(k)O 00]

C-Ir,o_(_)- Q,,,b(k) _>o, _ = I,..., A'

-Q_(_) >_o.k =

, _-r.(4.,2)

(4.73)

where Qs_b(k) E ._._x._ ra < n X_b denotes the first m elements of x and C -I, -- , x:_,b(k)

is the covariance matrix of z._,b(k), then

(4.74)R __.k_(:)] x

Proof:

i

!

m

1

i
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From Lemma 10, the specifications are positively correlated. The specifications

can be rewritten as

sk " xT,_,b(k)Q_,b(k)x,_,b(k) __ e2 (4.75)

Since x(k) is normally distributed with zero mean, x,,b(k) is also. From Theorem

2, P(sk) _> X_(e2). The positive correlation then yields the lower bound

R > [x_(d)] x v/ (4.76)

The results of this lemma are not, of course, restricted to only the first elements of

the state vector, x. Rather, by rearranging the vector, any subset of the state vector

may be used.

Lemma 11 is used extensively during the case study, because the case study

has specifications constraining the 6 dimensional pose error of a robotic system. The

state vector for the system, on the other hand, has 24 states. In order to optimize

the design, the case study makes use of the following result from discrete Lyapunov

control theory [27].

Theorem 12 Given the discrete time invariant system

• (k + 1) = A,z(k) + B,,,(_) (4.77)

with At asymptotically stable and a real positive definite symmetric weighting matrix

Q > 0 such that Q - ATQAt > O, the feedback

u" (k ) = -( B T Q B, )-I B_ Q Aex( k ) = -IV, x( k ) (4.7s)

reduces the weighted square norm zT(k)Qz(k) at the optimal rate.

Proof:

First define a discrete Lyapunov function

V(x(k)) = zT(k)Qx(k) (4.79)
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Since Q > 0, by the Stability theorem of Lyapunov, the system is asymptotically

stable in the large if

av(:_(k)) = v(z(_ + 1)) - ,v(_:(k))< 0 (4.80)

Let the feedback be denoted as u(k) = -Ktz(k). Then

or

AV(x(k)) = zr(k)[A, - B, IQ]TQ[A, - B,I(tlz(k) - zr(k)Qz(k) (4.81)

AV(z(k)) = xT(k)ATQA,z(k)+2zT(k)ATQBtu(k)+uT(k)BTQB, u(k)-xT(k)Qz(k)

(4.82)

In order to find the control, u(k), which will reduce the weighted square norm of

x(k) at its optimal rate, AV(x(k)) must be minimized. Minimization with respect

to u( k ) requires that

oav(x(k))
- 0 = 2Br, QA,z(k) + 2BTQB, u'(k) (4.83)

o_,(k)

u'( k) =-(BTQB,)-aBTQ.4,x(k) (4.84)

This does in fact produce a minimum because

oa2v(z(k))
= P = 2BTQB, >_ 0 (4.85)

Ou(k)2

i.e. P is positive semi-definite, so a minimum has been reached. The positive semi-

definiteness of 2BTQB_ follows from the fact that Q > 0 =_ zrQz > O, z # o. But -

can be written as z = v'_-B_y. Then zTQz = yr2BrQBty > 0, z ¢ 0. Since Bt may

have a nonzero null space, z may equal zero when y ¢ 0. Thus yrP 9 >_ O, y ¢ O. _/

Theorem 12 is not a new result of this work. Rather, it is a well known result

from discrete Lyapunov control theory applied to the results of this work.

In order to design a control algorithm for

1

z(k + i) = A,z(k) + B,u(k) + Dtv(k) (4.86)

!
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where E{z(k)} = 0 (this implies that only the stochastic errors are penalized,

not deterministic transient effects in the control law), v(k) is zero mean uncorre-

fated white Gaussian noise, z(t: + 1) = Atz(k) is asymptotically stable, and the

controller must be capable of reliably satisfying a set of specifications of the form

sk " xT(k)Qa(k)x(k) = xT,,b(k)Q,,,b(k)x,_b(k) <_ e2, the following algorithm is sug-

gested:

1. Select a matrix Q_ > 0.

2. Find a real positive definite solution Q to the Lyapunov equation Q-ATQA, =

Qt numerically.

3. If Q-Qe(k) >_ o, Vk = 1, .... N, then let u(k) = -(BTQB_)-'BTQA,:r.(k) to

produce a new (optimized) system x(k + 1) = Atlz(k) + Dttv_(k).

4. Calculate the covariance of z(k), C,(k), by solving C_(k + i) = At,C_(k)A T +

Dt, C ov( v,( k ) )D T.

5. Obtain the covariance matrix, C,,_b(k) = Cov[z,ub(k)], for the subset of the

state variables which are constrained by the specifications. C,_,_(k) can be

found from C_(k).

6. If C2_,(k)- Q,,,b(k) >_ 0, V k = 1,...,N then R >_ [X:_(e=)] ''. Otherwise, try

selecting a different Q1 or changing A_ through inner loop feedback gains and

go back to step 1.

This design procedure is used in the case study for reliably controlling a high pre-

cision positioning task in a robotic system.

4.5 Conclusions

The techniques developed here provide a method of easily analyzing specifica-

tions posed as a quadratic function of zero mean normal random vectors. This is
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useful in itself for evaluating static errors in robotic systems such as those arising

from an imperfect model of the manipulator kinematics or from a noisy set-point

measuredby a vision system. In addition, the method is applicable to multivariable

discrete time invariant control systems. Thus noise inside the feedback loop (such as

encoder noise) can also be analyzed, and the reliability of staying within a hyperel-

lipsoid defined by the quadratic specifications over an interval of time can be found.

In addition, entropy constraints are developed for the quadratic specifications, and

are shown to yield a lower bound on reliability which depends only on the order of

the vector.

The method has great potential for use in conjunction with Skelton's "co-

variance control" [18]. Skelton finds a parameterization for all compensators of a

specified order which will achieve a desired steady state covariance (for linear time

invariant systems). Skelton does not, on the other hand, develop any methods

for specifying the desired covariance matrix. Using the concepts developed herein,

it is possible to first phrase the specifications in terms of physically meaningful

weighted norms. A steady state covariance matrix C_ can then be selected such

that C2: - Q >_ O, and a compensator can be found which obtains C_ using Skel-

ton's theorems. Theorem 9 can then be used to find a lower bound on the reliability

of meeting the quadratic specifications over a time interval.

!

!
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5. CA.SE STUDY-RELIABILITY OF VISUAL POSITIONING

Visual positioning is an extremely important and highly developed facet of robotics.

However, surprisingly few attempts have been made at analyzing the reliability of

visual positioning. Thus, this section has a two-fold purpose. First, it illustrates

the ideas of the preceding chapters so that the notation and concepts are made

clear. Second, it provides a general reliability solution, useful for many hand/eye

coordination tasks of a robotic manipulator.

Problem to be Solved: A manipulator has already moved close to a grip-

ping post on an object using a priori knowledge. Due to environmental

uncertainties, the final movement cannot be completed without measur-

ing the current pose of the gripping post. Using a vision system mounted

on a separate arm, it is possible to view the object from N different pre-

programmed positions. Five inverse kinematics routines are available,

and a library of M computed torque compensators can be used for ma-

nipulator control. It is desired to make the final movement subject to

two specifications-the total execution time must be less than tj. and the

gripper must not collide with the gripping post. Find reliable subsets of

control and sensing which are capable of satis_'ing these specifications.

The first step in the analysis is the definition of the desired set of specifications,

So. To avoid collision with the gripping post, error tolerances are generated in each

of the 6 degrees of freedom from the geometry of the gripper and gripping post.

Hyperellipsoids are then inscribed within these tolerance bounds as a function of

the distance from the final gripping frame. The geometry of the post and gripper is

illustrated in Figures 5.1 and 5.2, while the overall configuration of the case study is

shown in Figure 5.3. The homogeneous transformation from the initial end effector

:3.:)
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frame to the base of the manipulating arm is

i 0 0 0

0 0 -1 -.3

0 1 0 -.2

0 0 0 1

(5.1)

The transform from the nominal gripping frame to the base of the manipulator is

1 0 0 0

0 0 -1 -.5

0 1 0 -.2

0 0 0 1

(5.2)

To properly grip the post, the end effector frame should be driven to coincide with

the gripping frame. Thus the end effector must be moved 20cm along its "z" axis

for the nominal grip to be performed. The object is not at its nominal position at

all times, rather the nominal position is a noisy estimate of the object's actual pose.

Consequently, a measurement of the object's pose must be made with the vision

system, and then the measured transformation from the gripping frame to the end

effector frame is used to generate a joint trajectory capable of docking the gripper

with the gripping post.

To perform the docking reliably, the generated trajectory" must prevent colli-

sions between the gripper and post. These collisions can be modeled by defining

tolerance bounds in each direction. The tolerance bound in the end effector's "x"

direction is easy to define because a collision will not occur due to the errors in this

direction. The only fear is that the grip will not be centered. To prevent drastically

off-centered grips, a tolerance bound of 3crn is defined. The tolerance value in the

end effector's "y" direction, on the other hand, is more critical as errors in "y" will

i

I

I
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cause collisions. Using the data in Figure 5.1, the "y'" tolerance is defined to be

.915 , p.. < 2/4 +13
%,,oz = p..-214-13+.9/5 , 214+13_<p.. <214+13-.9ls+16 (5.3)

16 , p.. > 214 + 13 - .91_ + 16

where p_ is the absolute value of the distance to be moved along the end effector's

"z" axis to dock the gripping and end effector origins. Since the specification be-

comes increasingly tighter as the object is approached, the end effector is, in effect,

"funneled" into the gripping pose. Once the gripping post is inside a portion of the

gripper, the "y" tolerance reaches its minimum value and stays at that constant

value for the remainder of the docking.

The specification for the "z" direction also becomes increasingly tighter as the

object is approached. It is defined to be

pz+13 , pz < 14
e,,,_, = 12 , 14 _< p, < 214 + 13 (5.4)

Pz-14 , p_>_214+13

In contrast to the "y" specification, the "z" specification does not reach a minimum

before the docking is complete, but instead becomes increasingly difficult to meet.

This reflects the fact that, as the gripping post is moved farther into the gripper,

a collision between the inside end of the gripper and the post is more difficult to

avoid.

The tolerance bounds for orientation are coupled to the allowable errors in

positioning. For instance, if a large error is present in the "y" direction, then even

slight rotations about the end effector's "x" axis will produce a collision. The :'x"
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orientation tolerance is thus defined as

arctan .5ls/14

pz - (2/4 +/3) + arctan .515/l 4

, p:<214+13

, 214 +l 3 < p. < w/2+2/4 +13

- arctan .5ls/l 4

, p, > r,/2 + 2la +/3 - arctan.5ls/14

(s.5)

The "y" orientation error is similar to the "x" positioning error- it will not cause

collisions under reasonable circumstances, but will cause off-centered grips. Thus

e0_,_°, = 23 degrees. Finally, rotational errors about the end effector's "z" axis can

cause collisions of the edge of the gripper with the post, thus

O

e0.... = p, -- (214 + 13) + a

rr/2

where

, p, <2/4+13

, 214+13_<p. <Tr/2+2/4+la-a

, p,>__'/2+214+la-a

(5.6)

!

Ir -. 115
= arccos _ - arctan ls/lr (5.7)

Vl¢+t I
The tolerance specifications obtained fl'om the data in Figure 5.2 is plotted in Figures

B.I-B.3.

Once the tolerance specifications are found, it is a very simple matter to in-

scribe hyperellipsoids inside those specifications. First, the radius of the hyperellip-

soid, e, must be selected. If the conditions of Theorem 2 are met, the probability of

staying inside the hyperellipsoid has a lower bound of X_(d). Thus e can be selected

from tables of the chi-square distribution. For the simulation, the radius is selected

to be d = 22 which yields a lower bound probability of .9988. The pose error in the

case study, e E N6, is represented as the roll-pitch-yaw angles stacked on top of the

position error. Thus the problem of inscribing hyperellipsoids can be expressed as

finding a weighting matrix, Qp_, such that if

erQprelee 2 (5.8)
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is satisfied, then e is inside the tolerance hyperrectangle.

One Qp_ which satisfies these requirements is

Q.=(p=) =

d/e_ .... 0 0 0 0 0

2 '_
0 e /e_.,o: 0 0 0 0

0 0 2 2le 0.... 0 0 0

0 0 0 2 2le_,,,<,= 0 0

0 0 0 0 2c/%,,,<,: 0

.'2 2
0 0 0 0 0 e /e:,.,,<,:

(5.9)

Note that, since the tolerance specifications ave a function of the distance to the

gripping frame, p., the weighting matrix (5.9) is also a function of p.. Since the

distance from the gripping frame to the end effector (p=) is a function of the generated

joint trajectory, Gd(k), Qp_(.) can be viewed as a function of either ®d(k) or k.

By using the weighting matrix found from the geometry, the specifications for

the given problem are:

• s1 = { total execution time is less than a desired time, t.¢ }

• s2 = { eT(k)Qp=(k)e(k) <_ e2, for all of the time steps, k. present in the

trajectory driving the end effector to the gripping frame }

Next, the plans must be formed. In this case, each plan will consist of the triplet

Ai = {V/, K,, G,}, where Wi, Ki, and Gi are the vision algorithm, inverse kinematics,

and compensator used by the i 'h plan, respectively. Each algorithm is now examined

in depth to find expressions for the statistical performance of each plan.

,5.1 Analysis of the Vision System

As previously stated, the vision system consists of a camera mounted on the

end of a separate robot arm. Although the vision system may be positioned at N

different viewpoints to reduce problems with noise, assume there is only sufficient
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FRONT VIEW

The MSFC Target Used in the Vision System

!

time to take measurements from one of the viewpoints. Each viewpoint will be

regarded as a separate vision algorithm, thus the number of potential vision algo-

rithms is also N. The accuracy in measuring the object's pose will depend upon the

pose of the object in the camera coordinate frame. Consequently, each viewpoint

will have differing measurement statistics. These statistics can be found by using

an approach similar to that of Lee and Kay [29].

The vision system used is based on a system developed by NASA's Marshall

Space Flight Center for autonomous docking of space ships. It consists of a single

camera and a three dimensional target. The target is depicted in Figure 5.4. Since

\

i
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Figure 5.5: A Pinhole Model of Camera Optics

the target parameters (dl, d2, r) are known, it is possible to find the target's pose

with only a single camera. The target pose then defines the gripping frame's pose

because the transformation from the target to the gripping frame is known. The

measurement is accomplished by first assigning a coordinate frame to the camera,

as shown in Figure 5.5, such that the camera frame X-Y plane corresponds to the

inverted image plane. Next, points are projected onto the image plane using the

pin-hole model of camera optics to produce the inverted image frame points (z,, y,)

from the camera frame coordinates, p, = [Pz, p_, p.-, 1]T

fP=,
•,- (5.10)

P.-, +f
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fP_,

y, = _ (,s.z l )
P.., +f

The positionsof the targetpoints with respect to the target coordinate system are

Pilaf=[ 0-d, 0 1 ]T (5.12)

tar

P2 =[ 0 dl 0 1] T (5.13)

pT_=[ d2 o o 1] _ (5.14)

pT=[ o o o 1] _- (5.15)

Points ,aT eatP_ -P3 correspond to the centers of the circular retroreflectors. In the sim-

ulation, the entire area of each circle is mapped onto the discrete grid formed by the

CCD image plane. The centroid of that image is then found to determine the image

position (z,, yi) which corresponds to the retroreflector center pl =T. Unfortunately,

if the circle is close to the image plane and at an angle with respect to the image

plane, then the image plane's centroid does not correspond to the center of the cir-

cle. This slight bias does not pose a problem in the system under consideration, as

will be demonstrated when the simulation results are presented. Let the unknown

transformation from the target coordinate system to the camera coordinate system

TJ_"'= [ Re_O 0 0 P ll

rt x $ x ax

fly $y ay

nz 3z a=

be denoted by

(5.z6)

(5.17)

(5.18)

The camera coordinates corresponding to the four target points are related by

p_:_ = l,,,T Pi (5.19)

IB

1

1
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1
\

These points are then substituted into (.5.10, 5.11) to produce six nonlinear equations

in nine unknowns

xl(--dls: + p. + f) = f(-dls_: + p_)

_(-d_s, + V.. + f)= f(-d, su + V_)

z_(dls: + p.. + f) = f(dls_ + p.)

g2(d,s_ + p_ + f) = f(d, su + pu)

zz(d2n_ + p. + f)- f(d2n_ + p_)

y3(d_n.. + p: + f) = f(d_n_ + p_)

Also, since pc_m is orthonormal,_tar

(5.2o)

(3.21)

(5.22)

(5.23)

(5.24)

(_.25)

nTn = 1 (5.26)

sTs = 1 (5.27)

nTs -- 0 (5.28)

a = nxs (5.29)

These nonlinear equations are solved in the simulation using the Newton-Raphson

iterative technique for solving nonlinear simultaneous equations. The solution yields

the transformation from the target coordinate system to the camera coordinate

system, T[_. Due to the iterative nature of the Newton-Raphson solution, the

measurement time is stochastic.

Once the homogeneous transformation matrix is found, it can be represented

as a 6 x 1 vector by expressing the rotation matrix in terms of roll-pitch-yaw angles.

Following the approach in [11], the roll-pitch-yaw angles can be found as:

O. = atan2(nu, n.) (5.30)

O. = atan2(sin O.a. - cos 0_%, - sin O.s_ + cos 0.sy)

8y = atan2(-n:,cosO_n_ + sin0.n_)
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The poseof the target can be expressedas

Xta r -"

p

0_

0,

p_

P_

pz

(5.33)

Equations 5.20-5.29 combined with 5.30-5.32 are nonlinear equations relating the

image measurements ((:r,,y,), i = 1...3) to x,'_. Due to pixel truncation, the

measured image positions will not be perfect. These image plane errors wilt cause

errors in zt_rc='_. Denote the true image positions as

!

xi = xi+ni_ (5.34)

where

!

Yi = yi + niy (5.35)

Tn,,_=g:- [nl= nl_ n2_ n2_ na_, nay (5.36)

is a vector of image noise. Using an approach similar to that of Lee and Kay [29],

the errors in x_=_o=_,et=re=', arising from nirnage can be found through a linearization

procedure. The procedure substitutes the true pose, z_,_=_' = zt=_='` + e_=_ and the

true image positions, (z'_,y$), into equations (5.20-5.29). Retaining only the first

order terms yields

Me,¢2_ = Dnim=g._ (5.37)

l
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where

M

D .,_

-zldls_ xtdls_ +/dis= -fdts_ -f 0

-yldls_ -/dis= yldts, fdls_ 0 -f

z_dls_ -z2dls_ - fdls_ fdls_ -f 0

y2dls_ + fdls_ -y_dls_ -fdls_ 0 -f

zad2ny -zzd2n_ - fd_n, fd2ny -f 0

y3d_n_ + f d2n, -yad_n_ - f d_n_ 0 - f

dts_ - v 0 0 0 0

0 dls_ - v 0 0 0

0 0 -dls_ - v 0 0

0 0 0 -dls_ - v 0

0 0 0 0 -d2n_ - v

0 0 0 0 0

The pose error is then

v=p,+ f

Xl

Yl

Z2

(5.3s)
Y2

z3

Y3

0

0

0

0

0

-d2nz - v

(5.39)

(5.40)

cam l
e,a , = M- Dn,,_ag, (5.41)

If the exact focal length is not known, then the errors arising in z_2y due to the

focal length error, e/, are (to a first order approximation)

-x_ - dls_ + p_

-Yl - dls_ + p_

-x; + dls_ + p_,
ca_'l

e_ = e/ (.5.42)

-y; + d_s_ + p_

-z3 + d2n_ + p_

-Y3 + d2n_ + p_:

Although the errors caused by focal length uncertainties can easily be accommodated

using (5.42). the present simulation does not include these terms.
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In order to find a set of position and orientationerrors corresponding to the

translations and rotations about the camera frame which will move the measured

TT_y into alignment with the actual T_, the coupling between positional errors

and orientation must be included. This yields the final (camera frame) errors in

pose due to pi×el truncation, ec_m, to be

eCQ, m

0

0 p: -p_
-p. 0 p:

p_ -p_: 0

i_f-l D_image -- Lni,_age

I
(5.43)

The covariance of the vision pose when using the i *h algorithm is then

Cui r T-- LiCov(nim=geni,,_g_)L i (5.44)

where Li is the measurement matrix made from the i t_ viewpoint.

In order to make use of (5.43), a statistical model must be found for the image

noise, n,,,_g,. This noise arises strictly from pixel truncation, because the image

position of a point is only known to be somewhere within the rectangle formed by

the pixel. With only the knowledge that the position is within bounds, the maximum

entropy distribution is given by Jaynes MEM principle to be uniform. Consequently.

a uniform distribution in the image plane is assumed for each pixel. Note that this

assumption is used strictly in the analysis of accuracy-uniformly distributed noise

is not added to the image. Instead, the geometry of the pin-hole camera model

dictates the noise level due to truncation. The variance of the image noise under

the uniform distribution is

IT r --

2 =w_/12 (5.46)O"9

where w_ and w_ are the pixel widths in the "x" and "y" directions, respectively.

!

\

i
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The image positions of the centers of the retroreflectors is found by finding

the centroi_s of the images caused by the retroreflectors. Consequently, the image

position of the center is much more accurate than a single pixe[. This increase in

accuracy is modeled by assuming that the pixet noise is independent and identically

distributed between pixels. The covariance of the centroid is then found by

,_rn + k= (5.47)
Cov(n,_) = a_- 2rn2

2n + k'_ (5.48)
Cov(n,y) = % 2n 2

where

• m is the number of rows covered by the image,

• k_ is the number of rows consisting of a single pixel,

• n is the number of columns covered by the image, and

• ku is the number of columns consisting of a single pixel.

Since the centroid is found by summing independent, identically distributed ran-

dom variables, the distribution of the centroid is (by the Central Limit Theorem)

Gaussian. This implies that ni_g, is a Gaussian random vector, and because ec_

is linearly related to ni,,,_g, through (5.43), ec_= is also Gaussian.

Once the image measurements have been made, then L may be computed,

and the error statistics ec,,,, can be found. This information serves as an excel-

lent performance check after the camera is positioned and measurements have been

made. Unfortunately, it does not provide a method of evaluating each viewpoint

without doing the time and computationally intensive re-positioning of the cam-

era. Fortunately, an estimate of e,_ can be obtained without making the image

measurements based on a priori knowledge. As the problem statement notes, an a

priori estimate of the object's position/orientation in the base frame is known. This
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frame may be mapped into the ithcamera coordinate system using the homogeneous

coordinate-Lransformation T_r,_ which maps frames from the base of the manipu-

lating arm to the i t_ camera coordinate system. Because the camera viewpoints

are pre-specified, the T_.'_,,_ transformations can be calculated off-line and stored

for later use at little cost to the system. Hence the a priori estimate of the three

points can be transformed from the base frame to each camera frame quite easily.

Estimates of the error transformation for the i *h viewpoint, denoted as Li, can then

be calculated. The quality of ]--i depends upon the relative error of the a priori

points in the camera frame. Since the cameras are kept at a respectable distance

from the object to avoid collisions and interference with the manipulation task, the

relative error is small, so initial analysis using Li is quite accurate. If the cameras

are used in an extremely close proximity to the object, then Li could conceivably

be conditioned on the probability density function of the a priori estimates [42] to

improve the estimate.

The time which each vision algorithm consumes consists of both a stochastic

and a deterministic component. First, the cameras must be re-positioned to the i th

viewpoint. This is a pre-programmed movement, so it takes a deterministic quantity

of time. Next, the measurement of the points must be made. Suppose that the total

vision time for the i *h algorithm (which includes the camera positioning time, image

processing time, and the time required for transformation to the end effector frame)

is

~ %,) (5.49)

Once the pose statistics are found from (5.43) and those of timing are found from

(5.49), the necessary information for the vision reliability analysis is complete.

In order to test the validity of the stochastic accuracy model, the vision system

has been simulated using Pro-MATLAB and the parameters listed in Fig. 5.5. The

model captures the vision system errors quite nicely over a wide range of operating

!
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conditions. Figures B.4-B.6 plot the absolute value of the measurement error as

the distance from the target to the camera isvaried. Also plotted isthe 3o bound

on the measurement error for each direction. The actual transformation from the

target to the camera frame is

_r

0 0 1 0.02

0 1 0 0.02

-1 0 0 ,s

0 0 0 1

Rot(v,o.1) (5.50)

0 0 1 0.i

0 1 0 0.I

-1 0 0 s

0 0 0 1

Rot(-, 0.3)Rot(> o.1) (2.51)

where Rot(y,O.1) denotes the homogeneous transformation rotating about the "y"

axis by" 0.1 radians with zero translation, and s varies between 0.1 and 3.5meters.

The accuracy in the "x" direction is plotted in Fig. 5.6 for convenience. Note that

the bound increases as the distance increases because the model incorporates the

decrease in accuracy as distance is increased. Note also that the "z" error is two

orders of magnitude larger than the "x" and "y" errors, yet the bound still closely

follows the actual error. Figure B.7 plots the pose error at each distance weighted

by the inverse covariance matrix. If the distribution of ec=_ is zero mean Gaussian

as assumed and the covariance matrix is correct, then the weighted error will have

a chi-square distribution with 6 degrees of freedom. Finally, the entropy of the

vision measurement is plotted in Fig. 5.7 As expected, the entropy increases as the

distance between the camera and the target increases.

In order to fully test the strengths and limitations of the statistical model,

measurements have been taken under a variety" of conditions. First, the position

and orientation of the target is varied. Figures B.8-B.10 are obtained with
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where Rot(z, 0.3) denotes the homogeneous transformation rotating about the "'z"

axis by 0.3. radians with zero translation, and s varies between 0.1 and 3.5m. The

principle difference between the previous transformation is that the target is shifted

8cm further off the camera axis in both the "x" and "y". As expected, the shift

causes a decrease in accuracy in the "x" and "y'. Fortunately, the statistical model

captures this phenomena, so the 3 standard deviation bound increases. Naturally,

information of this sort is very useful for decision making in Intelligent Machines.

To further test the model, the pose errors are shown in Figures B.11-B.13

under conditions specifically selected to bring out the unmodeled measurement bias

caused by approximating the center of the centroid to correspond to the center of

the retroreflector. This is an approximation which is very often made in computer

vision algorithms, and is very accurate as long as the object is much farther away

than one focal length, and the angle between the image plane and the object is

small. To bring out the effects, the camera is moved very close to the target, and

the target is rotated sharply. The transformations are

0 0 1 0.1

0 1 0 0.1

-1 0 0 s

0 0 0 1

Rot(z, 0.6)Rot(y, 0.9) (5.52)

where s varies between 2cm and 0.5 meters. Although the errors remain small, the

3o" bound is exceeded regularly due to the additional error arising from the centroidal

bias. This should not introduce any significant problem in practice as long as the

viewpoints are chosen to avoid these awkward poses.

To test the sensitivity of the statistical model to uncertainties in parameters

assumed to be deterministically known, a series of chi-square goodness of fit statis-

tics have been found as erroneous vision system parameters are used in measurement

of the target's pose. First, the target length, dl, is perturbed to +5 % of its nominal
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value. The results of the chi-square test are shown in Figure B.14. The probability

that the sample would arise from a Gaussian distribution drops off sharply in the

range of ±1%. Thus dl should be known to an accuracy of at least ±1%. The

target depth, d2, displays a similar sensitivity. The results in Figure B.14 indicate

that d2 should be known to an accuracy of at least 4-2 %. The focal length, on

the other hand, requires more precise information. As indicated in Figure B.15, the

focal length should be known to within ±0.2 %. Consequently, it is advisable to

include focal length uncertainties by using (5.42).

The simulation results indicate that the stochastic error model foL the vision

system is very good at characterizing the error sources arising from pixel truncation.

This information will soon be put to use in selecting reliable plans.

5.2 Analysis of the Kinematics Routines

In order to act upon the vision system's perception, it is necessary to use

an inverse kinematics routineto calculate the joint position corresponding to the

Cartesian object pose. This step is required because a joint-level computed torque

algorithm is used for servoing. Several inverse kinematics algorithms have been

developed, and the choice of which algorithm to use depends upon the time available

and the accuracy required.

For this example, five inverse kinematics routines will be considered. The first

method is probably the most commonly used inverse kinematics technique-simply

use the nominal link parameters provided by the manufacturer in the standard se-

rial calculations such as presented in [l 1]. This algorithm will be denoted by /(1.

The nominal link parameters are not exact due to manufacturing spreads, so error

is introduced by the using these parameters in the inverse kinematics computation.

Since many commercially available manipulators are designed explicitly to have

closed solution inverse kinematics for the nominal link parameters, it will assumed

!
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that the nominal manipulator possesses a closed form inverse kinematics solution.

In the simdlation, the kinematic model of the Unimation PUMA 560 will be used.

UnfoL'tunately, if a calibration technique such as that proposed by Ha vati [16] is em-

ployed, the resulting calibrated link parameters may not have closed solution inverse

kinematics. Consequently, to avoid the time consuming iterati_'e schemes for find-

ing the inverse kinematics, nominal kinematics may be used even if calibrated link

parameters are available. To measure the positioning accuracy using K1, the errors

are measured over a large number of points in the workspace, and the maximum

ent_'opy Gaussian distribution with the sample mean and variance is applied. This

technique will be used to assess the accuracy of all of the kinematic routines. For a

more refined analysis, it is possible to estimate the link parameters as described in

[16]. Next, through maximum likelihood estimation the positioning error (and its

distribution) as a function of joint position is estimated [32]. In either case, since

the nominal kinematics have a closed-form solution, the time required to perform

the computation is fixed.

The second algorithm, denoted as K2, is very similar to A'_. The closed form

solution is retained by calibrating the arm using Hayati's method, while constraining

the calibrated link parameters. Since the solution is constrained to be of closed

form, it results in larger errors than are obtained when the link parameters are not

artificially inhibited. On the other hand, it shows some increase in accuracy over

the nominal kinematics.

The thh'd method, proposed by Hayati [16] and denoted as A'3_ app_'oximately

updates the link parameters without ite_'ative schemes by using the inverse ma-

nipulato," Jacobian. Since the Jacobian is employed: the method is ill-conditiox_ed

in the neighborhoods of Jacobian singular points. Using singular value properties

and maximum likelihood estimation, an asymptotically normal approximate upper

bound on the normed positioning error can be found [32]. The bound can be used as
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a conservativeestimateof the positioning accuracy.Although this statistical model

does captur.esingularity effectsquite nicely, only statistics for the norm (and not

individual elements)are derived. Sinceseveral inversekinematics algorithms are

available, the refined estimate is not neededbecausethe other algorithms can be

employed when in the vicinity of singular points. As a result, accuracy statistics

obtained by the samplemeanand variance(as above)will be used. As in the previ-

ous algorithms, solution time is stochasticonly in that a few conditional loops may

or may not be executeddependingon the particular joint angle.

The fourth algorithm, denotedas IQ, makes use of Hayati's calibration tech-

nique to find the updated link parameters for the particular manipulator under

consideration. As alluded to previously, the updated kinematics may fail to possess

a closed form solution, so the iterative Newton-Raphson algorithm will be utilized

(see [56] for details). Again, this algorithm offers a trade-off: increased accuracy for

increased time. As before, the errors are measured, and a Gaussian distribution is

used to model the error. Since the time for executing K4 depends upon the number

of iterations required, the execution time is stochastic. To model the statistics, the

sample mean and variance of the execution time are found, and the most pessimistic

Gaussian distribution is assumed as a conservative measure.

The fifth algorithm, Ks, also uses the calibrated link parameters. However, in-

stead of using the Newton-Raphson technique, the Jacobi iterative method outlined

in [56] is employed.

To summarize, five inverse kinematics algorithms are available which play time

against accuracy. The algorithms are:

K1 = {Inverse kinematics using nominal link parameters} (5.53)

I(2 = {Calibrated kinematics constrained to a closed form}

K3 = {Update kinematics using the manipulator Jacobian}

(5.54)

(5.55)

!
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/_'4 = {Newton inverse kinematics using updated link parameters} (6.56)

/(s --{Jacobi inverse kinematics using updated link parameters} (6.67)

The choice of inverse kinematics routine depends upon the set of specifications, SD.

The specifications, in turn, interact with the statistical parameters of the algorithm.

These statistical parameters will be denoted as

e,, ~ N(0, (5.5s)

tk, 2~ (s.59)

where ek, is the end effector frame Cartesian pose error attributed to the i t_ inverse

kinematics algorithm, and tki is the time required for the inverse kinematics.

In addition to the inverse kinematic error present in the manipulating arm,

forward kinematic errors are also present because the pose of the camera arm is not

known exactly. These forward kinematic errors can be modeled in a very similar

fashion to the inverse kinematic errors. Through sampled measurements, the co-

variance matrix of the zero mean forward kinematic error is estimated to be Cvr,.

Lacking any other information, the most conservative distribution is Gaussian. One

major difference between the forward and inverse kinematic solutions is that the

forward kinematic solution has a closed form for all joint positions. Consequently,

rather than having a library of forward kinematic algorithms, it is only necessary to

have a single forward kinematic algorithm and use the most accurate estimates of

the link parameters.

To test the stochastic kinematic models, several tests have been performed.

First. the normed pose error for three of the inverse kinematics algorithms is plotted

in Figure 5.8. Note that the Jacobi iterative technique (Ks) produces the smallest

error, while the Jacobian update method (K3) yields a small error at most points,

but actually exceeds the nominal (K1) errors for three of the fifty random points.
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The normed error and floating point operations required for all inverse kine-

matic algor[zhms is illustrated in Figures C.I-C.5. In addition, the :3o" bound on the

floating point operations is also plotted. As expected, the most accurate algorithms

are the iterative techniques, but they are also the most computationally intensive.

To test the assumption that the kinematic errors are Gaussian, the pose error

for all of the kinematics routines is weighted by the inverse of the covariance matrix

obtained through the sample statistics (Figures C.6-C.8). Weighting a Gaussian

random vector by its inverse covariance matrix yields a chi-square distribution with

degrees of freedom equal to the dimension of the vector. Thus the plots should

display a chi-square distribution with six degrees of freedom. In addition to the

weighted norm, Figures C.6-C.8 also plot the median value for the chi-square dis-

tribution with 6 degrees of freedom (5.6). Thus half of the norms should be above

this mark, and half below. Chi-square goodness of fit tests indicate that the kine-

matic algorithms are nicely modeled by a Gaussian distribution with one notable

exception. The vast majority of the weighted norms for the Jacobian update al-

gorithm (Ka) are below the chi-square median. Thus a Gaussian distribution is a

rather coarse and conservative model for Ka.

To test the effect of joint backlash upon the stochastic models, a backlash

deadband of 0.25 degrees has been added to all joints of the PUMA, and the kine-

matic models have been found. The weighted norms are plotted in Figures C.9-C. 11.

As before, a zero mean Gaussian distribution fits well for all algorithms except Ka.

Finally. to examine the effect that joint noise and joint backlash has upon the

entropy of the kinematic algorithms, the joint entropy of each kinematic algorithm

is plotted as the noise and backlash is increased (Figures C.12-C.I?). As expected,

the entropy increases as either the joint noise or the backlash is increased.
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5.3 Analysis of the Control System

To control the movementsof the manipulator, a computed torque control law

is used.This control law is basedon the Euler-Lagrange dynamic equation:

r = D(O)@ + NL(®, @) (5.60)

where

• r is the torque applied by the motors,

• ® is the joint position vector,

• 6 is the joint velocity vector,

• @ is the joint acceleration vector,

• D(O) is the inertia matrix,

• NL(6), 6) is a vector of torques due to Coriolis, gravity, centripetal, and fric-

tion nonlinearities.

An effective method of controlling an arm with dynamics of the form (5.60) is the

computed torque technique described in [47], where the control function is defined

as:

r = D(6))E (5.61)

where E is a compensation term. Note that the nonlinear torques due to Coriolis,

gravity, centripetal and friction effects are not calculated in an open loop fashion

as is often proposed for computed torque control. Instead, since the concern of this

study is high precision movements, the movements are made over small distances at

low velocities. Under these conditions, a PID controller can remove the nonlinear

disturbances quite effectively. The nonlinear terms can, of course, be calculated if

a particular application demands the extra level of performance.

I
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Since D(®) is invertible due to the physical laws of inertia, this implies that

s29 = E(s) = c(s)(ed(s) - e(s)) (5.62)

where s denotes Laplace transformation, G(a) is a compensator, and ®d is the

desired position. The multivariable transfer function for the system is:

e = (5.63)

The joint position, ®, is subject to three sources of error:

1. Errors in the commanded position ®d, due to uncertainties in the vision and

kinematic algorithms. These errors are not affected by the control algorithm

because a PID control law is used, thus the expected value of the final O equals

Gd.

2. Errors due to the nonlinear (Coriolis, etc.) disturbances. Because these distur-

bances are almost constant when moving over small distances at a low velocity,

the PID compensator can remove these errors when it is operating at steady

state. The settling time of the closed loop system, therefore, determines the

time required to remove these effects.

:3. Errors arising from joint position and velocity measurement noise. Although

the expected value of these errors is zero, the variance depends upon the

compensator used.

As the bandwidth of the closed loop system is increased, the settling time

decreases. Unfortunately, the sensitivity of the system to noise is increased. The

compensator thus has two conflicting criteria to meet, and the choice of compensator

depends upon the specifications at hand. For the simulation, two compensators have

been designed using state space techniques. A continuous time model of the plant
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(the robot) can be written as:

_p= zp+ 0 -I u (5.64)
0 0

z = [.," 01<, + ,., (.5.65)

where u is the compensation term (the inverse Laplace transform of E), v is the

joint position sensor noise, and

On-O]
2"p = (5.66)

6d-o

This model assumes that, since D(O) pre-multiplies E, the inertia term is canceled

out, and NL(O, O) is removed by the PID compensation at steady state.

An exact discretization of the plant then yields

x,(k + 1)=
I t,I

0 t,I

u(k) (.5.67)

z(k) = [2o]x,(k) + _(k) (5.68)

or

zp(k + 1)

_(k) =

where t, is the sampling time. The

zc(k + I) = [

u(k) = [ICy�t, - ICe/t, + I(,

or

= Apxp(k) + Bpu( k ) (5.69 )

M,z,(k) + &v(k) (s.70)

structure of the discrete PID compensator is

] [0]0 I z_(k-) + :(k-) (5.71)

0 I I

_,]_..(k)+(.</t, +_c,+ t,ic,):(_) (s.r2)

zo(k + i) = Aoz_(_)+B_:(#)

u(k) = c_z_(k)+ D:=(_)

(5.73)

(5.74)

!
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Figure 5.9: Block Diagram of the Discretized PID Controller

where the set (K_, I(p, Ki) are the velocity, position, and integral of position gain

matrices. The closed loop discrete system is illustrated in Figure 5.9 (neglecting

dynamics due to sampling and a zero order hold). The figure includes process noise,

w, which is not used in this study.

Without any compensation term, the linearized robot plant in Figure 5.9 is

marginally stable. In order to use the Lyapunov design technique presented in Theo-

rem 12, the system must be asymptotically stable [27]. The PID compensator makes

the closed loop system asymptotically stable so that the Lyapunov design technique

may be employed to yield an optimal control capable of reliably staying within the

specified hyperellipsoid. In addition, the PID compensator removes positional errors

due to constant disturbances.

To ensure reliable control, an outer loop gain is designed using the L.vapunov

design technique (4.78). The outer loop is found by first formulating the closed loop

system of Figure 5.9 as

z(k + 1) = Aez(/_) + D,ve(k) + Beuc(k)

where

x(k.)= (3.76)
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Figure 5.10: Block Diagram with Lyapunov Outer Loop

AP + BpDcMp BpCc ]
At = (5.77)

BcMp A,

Dp BpD=Ep
D, = (5.78)

0 BcEp

v,(k') = [wT(k) vT(k)] T (5.79)

B_ = (5.s0)
0

The outer loop is illustrated in Figure 5.10, where v3 is the 24xl vector of state

measurement noise. Since the compensator states are known,

v3= [_r vT0]_ (5.sl)

where vl is the joint velocity measurement noise. One distinct disadvantage of this

control scheme is that full state feedback is required. In this case, it means that

both the joint position and velocity must be measured. The Lyapunov gain, Kl, is

found by first choosing a positive semi-definite matrix, QI, and then numerically

!
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solving the algebraic Lyapunov equation

Q -ArQA, = Q,

for Q. Note that, from Lemma I0, Q must satisfy

(5.s2)

Q- Q_ > o (._.s3)

However, Q is in joint coordinates, while the desired weighting matrix (Qp=) is in

Cartesian coordinates. Furthermore, Qp, penalizes only Cartesian pose, while Q is

a weight on all of the state variables (this includes joint position and velocity as well

as the compensator state variables). Fortunately, it is still a simple matter to find

an appropriate Qd. First, note that the manipulator Jacobian forms the first order

term in the Taylor series expansion

zcor,(k) _ z,o,,,(k) + J(ed(_:))[@(_) - @d(k)] (5.s4)

where x¢ar,(k) is the actual Cartesian pose at sample k, x¢a_,_(k) is the desired Carte-

sian pose at sample k, J(-) is the manipulator Jacobian, @_(k) is the joint position

at sample k, and O(k) is the actual joint position at sample k. The accuracy of this

approximation depends, of course, on the magnitude of the difference between the

desired and actual positions. Since high precision motion control is of concern in

this study, the difference is very small, so the approximation is verb" good. By com-

bining (5.8) and (5.84), the weighting matrix can be projected from the Cartesian

space into the joint space. Adding zero terms to account for those quantities that

are not weighted produces the following matrix inequality which must be satisfied

for all Od(_:) and k in the trajectory

Q - gr(o'_(k'))Q_=(k)J(Od(k))o o° ] > o (5.8.5)

Choosing a Q1 which will yield a Q satisfying (5.85) is not straightforward,

and is a topic of further research. Fortunately, finding a Q_ has not posed a problem
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in this study, although the chosenQ1 matrices are undoubtedly conservative. Once

a satisfact6ry QI has been found, the Lyapunov gain is from (4.78)

A', = (B QB,)-'BTQ,4, (s.s6)

The final closed loop system is then

• '(_" + i) = A,,_-(k) + D,t_.,(k) + B, uc(_') (5.87)

where

Aa = A, - Bt A'l (5.88)

Dt ! -- w

0 B, Ep 0 0 0

(5.59)

v, = [.T vT (.5.9o)

with K, a matrix of the first twelve columns of Kl. The steady state covariance of

x, Cca, is found from (5.87) by solving the discrete Lyapunov equation

Cc,l = A,Cct, AtT + DaC_l D T (5.91 )

where C.l is the covariance matrix of vt. This equation can be easily solved numer-

ically.

Two compensators have been developed for use in this study which form a basic

trade-off between time and accuracy. Both algorithms have a sampling time of t_ =

10rn_, have Gaussian joint position noise with standard deviation of 0.167 degrees.

and Gaussian joint velocity noise with standard deviation 2.4 deg/sec. These large

standard deviations are used to highlight effects due to noise. In the simulation of

the combined vision/kinematic/control system, the noise levels are at more realistic

levels for the PUMA. The joint position noise then has a standard deviation of 0.0033

degrees, while the joint velocity noise has standard deviation of 0.047 deg/sec. The

first compensator, denoted by G_, has the following PtD gain matrices

K, = 151 (5.92)

!
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Kp = 75I (.5.93)

K_ = 125I (5.94)

By choosing Q1 matrices and evaluating (5.85) over the desired trajectory, it has

been determined that Q1 = 50I will produce a satisfactory Kl via (5.82) and (5.88).

The final closed loop system has a settling time (determined by e×amining plots of

step responses) of 3 seconds.

A second compensator (G'2) has been designed by using the PID gains

= 30I (.5.95)

Kp = 300I (5.96)

K, = 10001 (5.97)

It has been found that QI = 100I will produce a Q and Kl satisfying the Lyapunov

matrix inequality (5.85). This system yields a settling time of 1 second.

The position error for joint 1 of the robot as it moves through the desired

trajectory is plotted in Figure 5.11. Note that G1 has a longer settling time than

G2, but it also has a smaller steady state covariance. Thus the choice of which

algorithm to use depends upon the task at hand. The settling time of the algorithm

affects the execution time in two ways:

1. In order to use the reliable control techniques developed in chapter 4, the

response must be at steady state. Thus the trajectory is scaled so that the

manipulator is able to achieve a steady state response to the constant Cartesian

velocity command before a critical region (as defined by the tolerance specifica-

tions, Figures B.1-B.3) is entered. The constant Cartesian velocity command

does not. of course, yield a constant joint velocity command. However, since

the movement is over a small distance and is kept away from manipulator
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Jacobian singularities, the Jacobian relating joint velocities to Cartesian ve-

locities changes very little during the movement. The joint velocity command

is, therefore, almost constant over the fine motion trajectory.

2. A faster control law requires fewer sampling times in the trajectory. Because

a joint level control law is used, the inverse kinematics must be solved at each

sample time. Thus the slower trajectory of a slow compensator requires more

calculations before movement can begin.

The steady state covariance, on the other hand, adds to the uncertainty in main-

taining a desired pose of the gripper with respect to the gripping post. In contrast

to the pose errors introduced by vision errors and faulty kinematics, which add a

constant bias error in the commanded pose, the errors arising from joint position

and velocity noise change as the manipulator moves. In order to apply Theorem 9.

the steady state value of the pose error inverse covariance matrix must be greater

than or equal to Qp_(Od(k)). To find the pose error covariance, the joint position

covariance, Cpq, is first determined from C¢,l by extracting the position covariance

terms. Next. Cpq is projected into Cartesian space using (5.84)

C,_. = J(ed(_))c, qJ(O_(_:)) r (5.9s)

The resulting matrix inequality is

[J(e,(k))C,,J(e,(k))r] -' - Q,,.(e_(_:)) > 0 (5.99)

The matrix inequality (5.99) holds for both compensators over the desired trajec-

tory. Since both (.5.85) and (5.99) hold over the trajectory of interest. Theorem 9

may be employed. In the case study, d = 2"2, thus XG(d) = 0.9988. For a _wo second

trajectory. 200 samples are generated (t, = 10ms). therefore the lower bound relia-

bility of staying within the hyperellipsoid defined by the most restrictive Qp¢(®d(k))

is

R > (.9988) 2°° = 0.79 (5.100)
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Figure 5.12 plots the weighted square norm of both compensators when using the

most restrictiveweighting matrix (Qp:) generated by the tolerance specifications.

The weighted square norm stays wellwithin the hyperellipsoid,because itsmaximum

value ison the order of 2,while the hyperellipsoidincludes allweighted square norms

lessthan or equal to 22.

5.4 Selection of Feasible Plans

Because the total number of possible plans for accomplishing the task is 5NxM

(where N = 10 and M" = 2), detailed analysis of every possibility can be very

time consuming. To avoid a complete analysis for all possibilities, a subset of the

plans (the feasible plans) will be found which satisfy necessary, but not sufficient,

conditions for reliable operation as described in chapter 2.

Consider the individual tasks which must be performed in order to solve the

given problem. First, the cameras must be moved to one of the N viewpoints. For

the simulation, ten viewpoints are specified. The initial pose of the camera manip-

ulator with respect to the nominal target frame is known from a priori information

to be (see Figure 5.3)

0 0 1 x

0 1 0 y

-I 0 0 z

0 0 0 1

(5.101)

where z = 0, y = 0, and z =lm. Each viewpoint is considered to be another vision

algorithm, so denote the initial viewpoint by k_. Four more viewpoints (14 - t.'_)

are found by decreasing z (this means the camera must be moved closer to the

target) in 20crn decrements. Finally, five more viewpoints (1_%- kl0) are found by"

letting x = 20cm, y = 10cra, and again varying z in 20cm decrements from Ira

to 20cm. For the sake of brevity, it is assumed that the camera manipulator can

!
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0

000.6
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Table 5.1: The Viewpoints Used in the Simulation

move at 0.2m/sec from the initial camera position towards other viewpoints. In

other words, the PUMA 560 dynamics are not included in the camera manipulator

as a simplification. The dynamics are included in the gripping manipulator, as high

precision motion is required. The viewpoints, T_,%'_, are listed in Table 5.1.

From the viewpoint, image processing is used to measure the object's position

in the camera coordinate system. The measurement will, of course, be imperfect

due to image noise, and it will take a variable length of time due to the iterative

nature of the solution. The measured pose, T/$_, is transformed to the end effector

frame using

T$:/_ = T:::j T:¢:,_: T/:_ T_[p (5.102)

where the subscript m denotes "measured" Both ,'rb_-,,• *b¢=._ (the transformation between

the two manipulator base frames) and T t=_ (the object grip to target transformation)- grip

are assumed to be perfectly known as they are fixed. Hence the accuracy of T_[_

depends upon the forward kinematic accuracy of the camera manipulator as well as

!

!
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the accuracy of the vision system.

A Cartesian space trajectory is then generated which will drive the end effector

from the initial pose to the grip pose. The trajectory is found by first calculating

from the known initial end effector pose the grip to end effector frame

(5.103)

Because the nominal scenario requires a .'20cm movement along the end effector's

"z" frame, a set of desired grip to end effector frames is specified to be

T;;ip (k) =

1 0 0 0

0 i 0 0

0 0 i pz-_o.,-i

0 0 0 1

(5.104)

where p: = T;f;p,,,(3, 4) is the measured distance along the end effector's "z" frame,

k is the sample number, and Nctt, is the total number of samples used by the ita

control algorithm. Ncth is determined from the geometry of the gripper to gripping

post interface and the settling time of the controller. The control should achieve a

steady state response to the step velocity command before any fine motion volume

is entered. For the geometry given in Figures 5.1 and 5.2, the fine motion begins

when the distance along the end effector's "z" axis is less than 214 + 13 = 10crn.

After finding the measured initial distance (pz), a constant velocity command for

the ita compensator is found to be

Pz -- (2/4 + /3)
v:i = (5.10.5)

_set,

where tset, is the settling time of the i t_ compensator, G,. This choice of" v:, allows

the controller to reach steady state before the fine motion volume is entered. The

number of samples required for control when using Gi is then

iVztl, = pz/Vzi (.5.106)
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The number of samplesrequired to achievestead)"state is

N_¢l,,, = t,_:,/t, (5.107)

The set of desired T_,vd(k ) flames is used to calculate a desired set of end

effector frames

T27'(k)= (S.lOS)

The time required to perform the forward kinematic calculations for a single T_"_(k)

is modeled as

tin,- '--, N(/-hF.,,-, 0._FK) (5.109)

Based on the desired frames, an inverse kinematics algorithm is selected to

find a joint trajectory for servoing the manipulator toward, i.e.

Od(k) ..= (k)] ( .110)

where Ki specifies the i th inverse kinematics algorithm. The inverse kinematics in-

troduces stochastic position errors and requires a stochastic period of time. Finally,

the joint servoing of the motors using the computed torque technique is performed.

The first specification, sa, constrains execution time. The total execution time

for plan ,4i = { _/i, I_.'i, Gi } is

ti = t_i + W:tt,(tFK + tk, + ts) (5.111)

Assuming independence (5.49), (5.59), and (5.109) yield

E{t,} = u,, = m., + N_.,(u,_, + m.-,. + q) (5.11"2_)

Cov(ti) = 0.2 r2 2 o"2 ) (5.113)t_, + t_ctt,(ortFt," + t_,

To produce an entropy specification with zero mean, the timing specification will

be considered as bounds (-It!- #t,],[tf -/_t,]). The quantity [t; - #t,] is positive

for reliable systems because otherwise the mean time is less than the maximum

,j

I

!

I
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execution time, so the resulting entropy from Table 2.1 is H(sl,) = ln(2[t/-/_,]).

o "2 2
The entropy of (5.113)is H(.4i_) = In _/2r, e(a'L, + i_%,,(o',_.,,. -4-v'_,)) As a result,

the timing constraints will be met if

in V/2_e(_,, -4- 2 _ In(2[tl- #t,]) (5.114)

is satisfied.

Using a final time specification of 25see, and determining the execution time

by counting the number of floating point operations, the time feasibility analysis has

been performed. From the original set of 100 plans, 58 of the plans have been selected

as feasible in meeting the timing specification. The plans selected as feasible are

intuitively pleasing and are listed in Table 5.2. Each plan in Table 5.2 is expressed as

a triplet, A = {V/, Ki, Gi}. The integer V_ denotes the vision algorithm (viewpoint)

from Table 5.1. The integer Ki denotes the inverse kinematics algorithm from (5.53-

5.57). Finally, the integer Gi denotes the compensator used, G_ or G2. Note that

those plans which require large amounts of time are not included. For instance,

A = {10,4, 1}, uses the viewpoint farthest from the initial camera position (1/_0),

the most computationally intensive inverse kinematics routine (K4), and the slowest

compensator (G1), so it is not included. In fact, no plan which uses the Newton

iterative inverse kinematics, K4, is selected as feasible because the algorithm requires

too many calculations.

In order to reduce the number of plans considered to be feasible, the ability

of the plan in meeting the restriction imposed by Lemma 11 is checked at the most

constraining weighting matrix. Since, from (5.85), Q_,b(k) = Qp_(®d(k)). Lemma

11 implies that the inverse of the pose covariance matrix minus Qp:(®d(k)) must

be positive semi-definite. As the gripper moves closer to the gripping frame, the

tolerance to positional errors becomes smaller (see Figures B.1-B.3). This in turn

causes an increase in Qp_(®d(k)) in accordance with (5.9). The largest weighting
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Table 5.2:

v,
1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

4

4

K_ Gi _ K; Gi
i i 4 2 i
1 2 4 2 2

2 1 4 3 2

2 2 4 5 2

3 2 5 1 1

5 2 5 1 2

1 1 5 2 1

1 2 5 2 2

2 1 5 3 2

2 2 6 1 1

3 2 6 1 2

5 2 6 2 1

1 1 6 2 2

1 2 6 3 2

2 1 6 5 2

2 2 7 1 1

3 2 7 1 2

5 2 7 2 1

1 1 7 2 2

1 2 7 3 2

V, Ki Gi

7 5 2

8 1 1

8 1 2

8 2 1

8 2 2

8 3 2

8 5 2

9 1 1

9 1 2

9 2 1

9 2 2

9 3 2

9 5 2

l0 1 1

10 1 2

10 2 1

i0 2 2

I0 3 2

Plans Feasible in Meeting the Timing Specification
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occurs when the trajectory reaches its final point because the end effector and grip-

ping frames should coincide in the ideal case. Thus Qp_(O,_(N)), where N is the

final sample, is the most constraining weighting matrix.

The pose covariance matrix has terms arising from four sources: the vision

system errors, forward kinematic errors, inverse kinematic errors, and joint control

errors. In order to propagate the vision system and forward kinematic errors to

the end effector frame, (5.102) and (5.103) are combined to produce the pose of the

gripping post with respect to the end effector

T;:,pm= T:LmT:::Zr:::: T::T: (5.115)

This pose can be represented (excepting kinematic singularity points) as a 6 x 1

vector by using (5.30)-(5.32). Let

--" icam_Xgrip) (5.116)

be the nonlinear function mapping the pose of the gripping post in the camera frame

to the pose of the gripping post in the end effector frame. Then by retaining the

first order terms in a Taylor series expansion of (5.116), the covariance matrix in

the end effector frame due to the vision and forward kinematic errors is from (2.14)

[8]

J_:,_(Oe(k))(C,,i + CFK)J;:m(®d(k)) (5.117)

where J_m(') is the interlink Jacobian matrix from the camera frame to the end

effector frame (see Equation (2.12)). The covariance due to inverse kinematic errors,

Cki, is measured in the end effector frame, so no transformation is necessary. Finally,

the control errors in joint space, Cpq, are projected to the end effector frame (to first

order) using (5.98). The total covariance of the gripping post's pose with respect to

the end effector for the i th plan is then

C_._,(,,Od(k))_ ' = J'::.,(ed(k))(C_,+Cp_,.)J_=_.(O_(k))+C_,+J(Od(_))C_j(e_(k)) r__ -

(5.11s)
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ki K, G, E K, G, E I(i G, %_ K, Gi

Plan 4 5 2 9 5 2 10 2 1 10 2 2

R,l 0.9919 0.9901 1.0 1.0

I(R,_) 0.008t 0.0099 21Se-8 2.2e-16

Table 5.3: Feasible Plans

From Theorem 2, if

C_,,, (i, ed(k))-Q,,(Od(k)) > 0 (5.119)

then a lower bound reliability of the i th plan staying inside the specified hyper-

ellipsoid at sample k can be found. Since the covariance matrices are constants

multiplied by Jacobian matrices, and the movement is over a small distance away

from Jacobian singularities, C _-_-g,ip (i, Od(k)) is almost constant. Consequently, to

assess positional feasibility, those plans which are feasible in meeting the timing

specification are tested to see if

ee-! .

(,, od(0))- _>o (5.12o)

is satisfied. If (5.120) is true, then the plan is considered to be a feasible plan, and

further analysis is performed to determine if the plan will execute reliably. The four

plans deemed to be feasible are listed in Table 5.3. Note that the feasible plans

require moving the camera much closer to the target (from lm to within 0.4m). In

addition, note that it is possible to trade the increased inverse kinematic accuracy

present in the Jacobi iterative technique (Ks) for extra accuracy in the vision system

by moving from viewpoint 9 to viewpoint 10. It is not, on the other hand, possible

to use Ks from viewpoint 10 because the available time is too short.

!

i

|
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5.5 Calculation of Reliability

The entropy constraints generated in the last section implicitly assure a level

of reliability. In order to explicitly find the reliability for a particular plan, further

analysis is warranted.

First, the specifications (So) are used in conjunction with the mathematical

laws governing the system to produce reliability performance functions correspond-

ing to each algorithm. The timing RPF for the i _h plan follows in a straightforward

manner:

g,1 = tf - t, (5.121)

Since ti consists of a linear combination of times, using (5.111) the reliability index

corresponding to gil can be found from (3.10). The timing reliability index is thus:

= + + + t,)] (5.122)
+

By using a look up table for the zero mean normal cumulative distribution function,

the reliability can easily be found from (3.11). Moreover, the RSI is found from

(3.16):

Note that all of the reliability self information terms for execution time can be

determined off-line. This is quite a time saving feature because it allows many

of the unreliable plans (i.e. plans with large I(Ra) terms) to be identified before

execution begins. The timing reliabitities and RSI terms for the feasible plans are

listed in Table 5.3.

In order to determine which plans are not only feasible, but are in fact reliable

at meeting the desired set of specifications, SD, it must first be ensured that the

conditions of Lemma 11 are satisfied. For this case study, the conditions become,
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Plan

Time ReIia.

Time RSI

Accuracy Relia.

Accuracy" RSI

Overall Retia.

Overall RSI

1/_ K, G_

4 5 2

0.9919

0.0081

0.8555

0.1561

0.8486

0.1642

ic, c, II i,', c,
9 5

0.9901

0.0099

0.8555

o.156i

0.84t0

0.1660

2 10 2 1

1.0

2.8e-8

0.6261

0.4682

0.6261

0.4682

!

Table 5.4: Plans Satisfying the Matrix Inequalities

from (5.85) and (5.119)

Jr(ed(k))G_(Od(k))J(ed(k))0 o°] >__0 (5.124)

_--1 .

c;,_, 0, ed(k)) - Gdo_(k)) > o (5.i25)

These matrix inequalities must be satisfied for all of the desired joint positions in

the fine motion portion of the trajectory, E)d(k), k = N, tu,_,..., Nc_l_. Since the

fine motion requires between 100 and 400 samples, this reliability check is quite

computationally intensive. However, the fine motion joint trajectory is over a very

small range. As a consequence, a smaller number of samples can be checked as a

very good approximation. In the simulation, 20 sample points evenly distributed in

the fine motion trajectory are substituted into (5.124) and (5.125). Of the feasible

plans, the plans listed in Table 5.4 satisfy the matrix inequalities at all 20 sample

points. Since the reliable plans meet the conditions of Theorem 9, it is very easy

to find a lower bound reliability of meeting the accuracy specification, s2. Thus, for

a single sample, e2 = 22, Rk _> Xs(d) = 0.9988. The probability of .41_, staying

within s2 during fine motion control has a lower bound of

!

R,2 > [0.9988] _v¢'''-_'"''' (5.126)

!
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The RSI is

I( Ri2) =-(;Vctl, -- ._'ctl,,,)ln[x_(22)) (5.197)

Equations (5.123) and (5.127) are explicit functions relating the iea feasible subset

of algorithms, Aj_=_,, and the environment and design stochastic variables to the

RSI. The equations must now be combined to form one total RSI for each subset of

algorithms.

Since all of the specifications must be satisfied to ensure that the desired

standards are met and the specifications are independent, the system forms a series

connection. The total RSI for a particular subset of algorithms, AI_=,,, is found

from (3.20) to be the sum of the RSI's for each specification, i.e.

I(n,) = z(R,,) + Z(R,:)

A threshold can be set on I(Ri) to discriminate reliable from unreliable plans. Those

plans with a total reliability self information less than the threshold will then be

considered reliable. In this manner, a specified level of reliability in meeting the

desired requirements can be achieved. For instance, suppose a reliability of 0.75 is

desired. The RSI threshold is then 0.2877. From Table 5.4, the RSI for A = (10,2, 1)

is 0.4682. thus A = (10, 2, 1) is not considered to be a reliable plan. On the other

hand, both plans (4, 5, 2) and (9, 5, 2) have acceptable overall RSI values and will

therefore execute reliably.

5.6 Comments

To test the results of the analysis, several of the plans have been simulated

using the vision system depicted in Figures .5.4 and 5.5, PUMA 560 kinematics for

both the camera and end effector manipulator, and PUMA 560 dynamics for the

end effector manipulator. The pose errors for plan (4,5,2) are plotted in Figures

5.13-5.15. In addition, the upper and lower tolerance bounds from Figures B.I-B.3
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are also plotted, as dashed and dotted lines, respectively. The errors in all directions

stay well _:ithin the tolerance bounds, and the plan is executed within the timing

constraint, so the plan is successful in achieving the task at hand. Similar results are

obtained for the second reliable plan, (9, 5, 2). The results are illustrated in Figures

D.1-D.3. To check repeatability, the plans are repeatedly tested. Both plans have

reliably executed the entire task twenty consecutive times.

In contrast, A = (1,1,1) is not selected by the analysis as a reliable plan. The

results of this plan are depicted in Figures D.4-D.6. In this case, both the "Y" and

"Z" errors exceed the tolerances.

As these examples illustrate, the reliability analysis techniques developed herein

are very effective at selecting reliable plans from a set of plans. In addition, a means

is illustrated whereby the positioning tolerances arising from the geometry of a

gripping interface can be recast as a position-varying hyperellipsoid specification.

Since the case study example is a very high fidelity simulation of realistic multi-arm

robotic systems, the algorithms analyzed are fully capable of being implemented

on standard robotic hardware. Thus the results of the case study may be directly

applied to actual systems.

!

!
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6. CONCLUSIONS AND FUTURE WORK

By" bringing together concepts from reliability" and information theory, a new tech-

nique for systematically selecting reliable designs capable of executing a given task

has been developed. The two stage procedure has several advantages. In particu-

lar, because the first stage proposes a coarse but computationally efficient entropy

based elimination algorithm, a large number of unsuitable plans can quickly be ex-

cluded from further analysis. For scalar random variables subject to tolerance spec-

ifications, a lower bound on the reliability imposed by satisfaction of the entropy

constraints is derived as long as the distribution of the random variable is either

Gaussian, uniform, double exponential, Poisson, or Rayleigh. A lower bound relia-

bility is also derived for correlated zero mean Gaussian vectors subject to quadratic

specifications. The approach is especially adept at analyzing physically distributed

systems due to the invariance of joint entropy to homogeneous coordinate frame

transformations.

The second stage provides a practical framework for explicitly' calculating the

probability of success of a feasible plan. In this manner, plans of sufficient reliability

can be found. Two methods are proposed for calculating the probability. Maximum

likelihood estimation is suggested because it possesses the property of asymptotic

normality. A large number of samples is required, of course, for asymptotic normal-

ity to be safely' assumed. The first order, second moment methods from structural

reliability offer a second ahernative for calculating the probability of success. Lower

bounds on reliability can be found even for nonlinear reliability" performance func-

tions. The reliabilities calculated by either technique can be combined to find the

probability of meeting all of the specifications simultaneously as long as the speci-

fications are independent. Plans of sufficient reliability may then be executed.

To allow anatysis of performance over a time interval, a lower bound on the

106
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reliability of a discrete time-invariant control in meeting a set of quadratic speci-

fications is-derived. This result can easily be applied to robotic systems after the

system is linearized using nonlinear feedback. The quadratic specifications delineate

the maximum acceptable value of a weighted square 12 norm of the system's state

error. The state error must be a zero mean Gaussian vector, so the measurement

and process noise must be zero mean Gaussian variates. Although the analysis

is conservative because it provides only a lower bound on the reliability, it does

produce useful results in the case study.

The case study of visual positioning successfully applies these new techniques

to a problem of practical significance. Because the errors in visual sensing, kinematic

transformations, and control can all be accommodated in the analysis framework, an

unprecedented level of statistical modeling for visual positioning has been achieved.

Given realistic dimensions for a gripper and a gripping post, actual camera parame-

ters, and the kinematic and dynamic models for the PUMA 560, the analysis deemed

3 out of 100 plans to be reliable. Each of the reliable plans did, in fact, execute

reliably. Plans which were not deemed reliable also performed as expected, as they

exhibited failures. This statistical model should prove very useful in high precision

robotic tasks such as VLSI etching, medical manipulators, micro-robotics, etc.

6.1 Contributions

The contributions of this work are the following:

• A new method of representing specifications which delineates the maximum

level of uncertainty allowed by the specification has been suggested.

• A new approach to reliability analysis based upon satisfaction of a set of

entropy constraints has been developed.
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• An original application of entropy invariance to homogeneous coordinate frame

transformations is proposed for simplifying analysis of distributed systems.

• A systematic framework has been developed for calculating reliability of robotic

systems.

• A lower bound on the reliability of a zero mean Gaussian vector meeting a

quidratic specification is derived.

• The reliability of a control/sensing system over a time interval has been evalu-

ated by deriving lower bounds on reliability for discrete time-invariant control

systems.

• The first complete statistical analysis of visual positioning in the full six degree

of freedom case has been developed. Errors arising from image noise, forward

kinematic transformations, inverse kinematic transformations, and joint mea-

surement noise are stochastically modeled.

6.2 Future Work

To extend the research presented in this thesis, the following issues may be

addressed:

• The reliability analysis finds the probability of success in achieving a set of

specifications, but does not assign a cost to alternative strategies. Decision

making may be enhanced by adding cost criteria.

• Rather than visual positioning, the case study can be extended to visual ser-

voing. This will desensitize the closed loop system to forward and inverse

kinematic errors if a Cartesian contr6l law is used.

• Methods for analyzing digital controls with assorted update times (i.e. a fast

sampling time for closed loop control, but a slower sampling rate available

1

i
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from a visual measurement system) need to be developed.

• Some applications may mandate a small number of samples when estimating

statistics for individual algorithms. The small sample properties and the levels

of confidence arising from the estimates can be investigated.

• An analysis of the reliability when discrete distributions are used may offer

some advantages. First, since the actual distributions are discrete due to the

presence of analog to digital converters, the modeling accuracy may increase.

Second, many entropy properties have been developed in information theory

for discrete distributions, so these properties may be employed.

• It might be possible to blend the results of the control analysis with Skelton's

covariance control to yield a combined analysis/design technique.

• The reliability of other sensing algorithms can be analyzed and incorporated

into the framework.

In conclusion, the framework for reliability analysis presented seems to be

effective at selecting reliable plans for robotic systems. The case study example is a

very high fidelity simulation of realistic multi-arm robotic systems. Moreover, the

algorithms developed are fully capable of being implemented on standard robotic

hardware.
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- APPENDIX A

IMPLICIT RELIABILITY FOR TOLERANCE SPECIFICATIONS

For a tolerance range represented as #_: 4- d,

R- P{lx- u=l < d} (A.1)

The entropy constraint requires that

H(z) <_ ln2d (A.2)

For a class of distributions including the Gaussian, uniform, double exponential,

exponential, Poisson, and Rayleigh

H(x) = In o'_ + In t3 (A.3)

where B is a constant. This implies that

From the Chebyshev inequality,

In o'_ + In B _< In 2d (A.4)

o-__5._< _2 (A.5)
d -B

R= P{Ix- u=] < d} > 1 -a2=/d 2 (A.6)

or

R > 1 - 4/B _ (A.7)

Thus a conservative lower bound on reliability implicitly guaranteed by the entropy

constraints (for tolerance specifications) can be found for a large class of distributions

by determining the constant, B, for the particular distribution.
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APPENDIX B

VISION SYSTEM SIMULATION RESULTS

Simulation results for the Marshall Space Flight Center vision system are presented

in this appendix. Figures B.I-B.3 display the tolerance bounds of the gripping

interface as the distance between the two frames is varied. Figures B.4-B.6 show

the actual measurement errors of the vision system as well as the 3or bound predicted

by the stochastic model while the pose of the target is kept at a typical value. Figure

B.7 plots the normed pose error as it is weighted by the predicted inverse covariance.

If the distribution is zero mean Gaussian as assumed and the predicted covariance

is correct, then the plot should have a chi-square distribution with 6 degrees of

freedom.

To test the robustness of the stochastic model for the vision system, Figures

B.8-B.13 plot the measurement errors and 3a bound for two poses which violate the

assumptions of the statistical model. The first test places the pose of the target at

an extreme angle so that the cross sectional area of the retroreflector in the image

plane is very small. The second test purposely moves into positions which are not

likely in a practical environment, but which induce a large bias due to the centroid

not corresponding to the center of the retroreflector. Finally, Figures B.14 and B.15

provide the chi-square goodness of fit probability as the target parameters d_ and

d_ as well as the focal length are varied.
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APPENDIX C

KINEMATIC SIMULATION RESULTS

Appendix C provides the kinematic simulation results. Figures C.1-C.5 plot the

l_ norm of the end effector frame pose error for each of the five inverse kinematic

routines. The errors are found at a number of randomly selected joint positions,

with the same set of joint positions used for each inverse kinematic algorithm. In

addition, the floating point operations required to execute each of the algorithms is

also displayed, along with the sample mean and 3or bound.

Figures C.6-C.8 plot the norm squared end effector pose error as it is weighted

by the predicted inverse covariance matrix. The joint noise and backlash are kept at

values normally expected for the PUMA 560. The resulting distribution should be

X_('), so the median of the chi-square distribution is also plotted (it is 5.6). Figures

C.9-C.11 are very similar to the previous plots, but in this case a large backlash

deadband is added. The statistical properties do not greatly change.

Figures C.12-C.17 plot the joint entropy of the end effector frame pose error

for each kinematic algorithm as two statistical parameters are varied. First, the

standard deviation of the joint noise is increased from 0 to 0.3.5 degrees. As expected.

the entropy also increases. Finally, the width of the backlash deadband is varied

from 0 to 2 degrees as the entropy is plotted.
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APPENDIX D

PLAN EXECUTION SIMULATION RESULTS

This appendix plots the pose errors in each direction as the gripping frame is ap-

proached. The results for two plans are presented. First, plan A = {9, 5,2} is

simulated. Since it uses vision algorithm 9, the camera is 0.4m from the target

when the picture is taken. Additionally, I(s (the aacobi interative inverse kinemat-

ics method) is used, so errors due to the inverse kinematics are minimized. Finally,

G2 is used as a compensator. Since it has a short settling time, it allows the tra-

jectory to be traversed quickly. The errors are plotted in Figures D.1-D.3, along

with the tolerance bounds obtained from the geometry of the gripping interface.

The errors are well within the tolerance bounds throughout the entire trajectory.

This is the expected result because A = {9, 5, 2} has been validated by the analysis

procedure to be a reliable plan.

Plan A = {1,1, 1}, on the other hand, is not deemed to be a reliable plan. The

errors and tolerance bounds for A = {1, 1, 1} are plotted in Figures D.4-D.6. The

plan does not meet the specifications. In fact, the tolerance bounds are exceeded in

both the ""1.... and "Z" directions.
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